Articles you may be interested inReduction of threading dislocation density in SiGe layers on Si (001) using a two-step strain-relaxation procedure Appl.
The morphology and causes of stacking faults (SF) in homoepitaxial layers of 4H-SiC were studied. According to characteristics of PL images and morphology images of 4H-SiC five kinds of SFs have been defined. In the PL images, the morphologies of SF I and SF II-V are trapezoidal and triangular, respectively. SF II lays inside the area of SF I. In the morphology images, SF I and IV are not seen, SF II-III are carrot shaped and SF V is triangular respectively. The results show that SF I is a kind of base plane SF which originates from the base plane dislocation (BPD) lines of the substrate, parallel to <1100> direction and moving along <1120> direction during epitaxial growing. SF II and most of SF III-IV originate from BPDs in substrate. One BPD converts into threading dislocation during epitaxial growing and propagates to the surface along <0001> direction, while other BPDs or partial dislocations originating from threading dislocation propagate in (0001) plane to form triangular base plane SFs. The rest of SF III-IV and SF V originate from threading edge dislocation or other defects in substrate. SF II-III display carrots morphology because a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.