Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO 4 .Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DLpropargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells.Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Inhalation of beryllium and its compounds can cause lung injuries, resulting from inflammation and oxidative stress. Multivesicular bodies (MVB), such as exosomes, are membrane vesicles produced by early and late endosomes that mediate intercellular communications. However, the role of exosomes in beryllium toxicity has not been elucidated. This current study aimed to investigate the functional role of exosomes in lung injury resulting from beryllium sulfate (BeSO 4 ). Here, Sprague-Dawley (SD) rats were exposed to 4, 8, and 12 mg/kg BeSO 4 by nonexposed intratracheal instillation. Murine macrophage (RAW 264.7) cells were pretreated with 50 nmol/L rapamycin (an mTOR signaling pathway inhibitor) for 30 min and then cultured for 24 h with 100 μg/mL exosomes, which had been previously isolated from the serum of 12 mg/kg BeSO 4 -treated SD rats. Compared with those of the controls, exposure to BeSO 4 in vivo increased LDH activity, elevated levels of inflammatory cytokines (IL-10, TNF-α, and IFN-γ) alongside inflammation-related proteins expression (COX-2 and iNOS), and enhanced secretion of exosomes from the SD rat's serum. Moreover, the BeSO 4 -Exos-induced upregulation of LDH activity and inflammatory responses in RAW 264.7 cells can be alleviated following pretreatment with rapamycin. Collectively, these results suggest that serum exosomes play an important role in pulmonary inflammation induced by BeSO 4 in RAW 264.7 cells via the mTOR pathway.
Background Beryllium and its compounds are carcinogenicity, but the mechanisms through which this occurs have yet to be clarified. Accumulating evidence exists that long noncoding RNAs (lncRNAs) play an important role in occurrence and development of cancer. Aims and Methods To explore the carcinogenic mechanism of beryllium, human bronchial epithelial cells (16HBE) were treated with 50 μM beryllium sulfate (BeSO4) for 45 passages (~23 weeks). The expression levels of lncRNA SNHG7, SNHG11, SNHG15, MIR22HG, GMPS, and SIK1 were detected at passage 0 (P0), 15 (P15), 25 (P25), 35 (P35), and 45 (P45). Results The results indicated that enhanced cell proliferation, extensive clones in soft agar, protein expressions of up-regulated matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 2 (MMP2), proliferating cell nuclear antigen (PCNA), cyclin D1, and down-regulated p53 were all observed at the 45th passage in 16HBE cells. Thus, BeSO4-transformed 16HBE cells (T-16HBE) were established. Meanwhile, the study found that the expression of lncRNA SNHG11 was elevated during malignant transformation. Knockdown of SNHG11 in T-16HBE cells blocked cell proliferation, invasion, and migration, and decreased the protein levels of MMP9, MMP2, PCNA, cyclin D1, but increased p53. Conclusions The studies revealed that SNHG11 acts as an oncogene in the malignant transformation of 16HBE cells induced by BeSO4, which signifies progress in the study of the carcinogenic mechanism of beryllium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.