Flooding events have been negatively affecting the Republic of Kazakhstan, with higher occurrence in flat parts of the country during spring snowmelt in snow-fed rivers. The current project aims to assess the flood hazard reduction capacity of Alva irrigation system, which is located in the interfluve area of Yesil and Nura Rivers. The assessment is performed by simulating spring floods using HEC-RAS 2D and controlling the gates of the existing system. A digital elevation model of the study domain was generated by integration of Sentinel-1 radar images with the data obtained from bathymetrical survey and aerial photography. Comparison of the simulated inundation area with a remote sensing image of spring flood in April 2019 indicated that the main reason for differences was due to local snowmelt in the study domain. Exclusion of areas flooded by local snowmelt, which were identified using the updated DEM, from comparison increased the model similarity to 70%. Further simulations of different exceedance probability hydrographs enabled classification of the study area according to maximum flood depth and flood duration. Theoretical changes on the dam crest as well as additional gates were proposed to improve the system capacity by flooding agriculturally important areas, which were not flooded during the simulation of the current system. The developed model could be used by local authorities for further development of flood mitigation measures and assessment of different development plans of the irrigation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.