BackgroundRheological disorders of red blood cells (RBC) and decreased RBC deformability have been involved in the development of diabetic microangiopathy. However, few studies have evaluated the association of RBC count with microvascular complications in patients with type 2 diabetes mellitus (T2DM). The purpose of this study was to investigate the association of RBC count with microvascular complications in patients with T2DM.MethodsThis study involved 369 patients with T2DM: 243 with one or more microvascular complications and 126 without microvascular complications. Anticoagulated blood was collected and analyzed in an automated blood cell counter. The presence of risk factors for microvascular complications was determined.ResultsThe proportion of patients with microvascular complications increased as the RBC count decreased (P < 0.001). After adjustment for known risk factors for microvascular complications by logistic regression analysis, lower quartiles of RBC count were associated with a higher risk of microvascular complications compared with the reference group composed of the highest quartile (first quartile, odds ratio 4.98, 95% confidence interval 1.54–6.19, P = 0.008; second quartile, odds ratio 3.21, 95% confidence interval 1.17–5.28, P = 0.024).ConclusionA decreased RBC count is associated with microvascular complications in Chinese patients with T2DM. The RBC count is a potential marker to improve further the ability to identify diabetic patients at high risk of microvascular complications.
In the version of this article published in the July issue, 2012, the lettering of 'β-action' is a misprint for 'GAPDH' in panel A of Figure 2 (pages 228).
Myocardial infarction (MI) as the remarkable presentation of coronary artery disease is still a reason for morbidity and mortality in worldwide.Lysosomal-associated protein transmembrane 5 (LAPTM5) is a lysosomal-related protein found in hematopoietic tissues and has been confirmed as a positive regulator of pro-inflammatory pathways in macrophages. However, the role of LAPTM5 in MI remains unknown. In this study, we found that both mRNA and protein expression levels of LAPTM5 were significantly elevated in MI mice. Suppression of LAPTM5 in myocardial tissues decreased cardiac fibrosis and improved cardiac function after MI. At the molecular level, downregulated LAPTM5 dramatically suppressed the macrophage activation and inflammatory response via inhibiting the activation of the NF-κB pathway. Collectively, suppression of LAPTM5 in myocardial tissues inhibits the pro-inflammatory response and the cardiac dysfunction caused by MI. This study indicated that LAPTM5 as a pro-inflammatory factor plays a crucial role in MI disease.
IntroductionGastric cancer is a highly heterogeneous malignant tumor of the digestive system. Anti-HER2 treatment can inhibit downstream signaling pathways and improve clinical treatment and outcomes in patients with HER2 protein overexpression. Currently, two standard methods for evaluating HER2 expression status are immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). However, these low-throughput assays often produce discordant or equivocal results.MethodsIn this study, we presented a new HER2 protein detection method based on mass spectrometry selected reaction monitoring (MS-SRM) and validated the method. We conducted a retrospective study on 118 formalin-fixed paraffin-embedded (FFPE) tissues from patients with advanced gastric adenocarcinoma in northern China, and we compared the MS-SRM results with those from IHC and correlated them with FISH. ResultsWe established and validated the upper and lower detection limits (300-700 amol/μg) for abnormal HER2 protein expression in advanced gastric cancer. We also found that, among samples with mixed Lauren subtypes, those with a high level of HER2 expression had typical intestinal type features in pathology. DiscussionThis study demonstrated that the MS-SRM method can overcome the limitations and deficiencies of IHC, directly quantify the expression of HER2 protein in tumor cells and be used as a supplement to IHC. It has the potential to be used as a companion diagnosis for new drugs used to treat advanced gastric cancer. Large-scale clinical validation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.