For a long time, empirical formulars have been used to predict the steady-state creep rate due to lack of clear microscopic description of the mechanism, which frequently leads to unreliable predictions. In this work, a statistical model of single atom developed recently is used to predict the steady-state creep rate at an atomic diffusion level. To test the model, we measure the creep rates of three kinds of materials, i.e., 42CrMoA, 2Cr12Ni, and 1Cr12Mo, and collect the experimental data of other materials, such as IN738LC and K435. The results show that our theoretical predicts are in good agreement with the experimental results.
In this paper, we derive a universal function from a model based on statistical mechanics developed recently, and show that the function is well fitted to all the available experimental data which cannot be described by any function previously established. With the function predicting creep rate, it is unnecessary to consider which creep mechanism dominates the process, but only perform several experiments to determine the three constants in the function. It is expected that the new function would be widely used in industry in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.