As an advanced driver assistance system, automatic emergency braking (AEB) can effectively reduce accidents by using high-precision and high-coverage sensors. In particular, it has a significant advantage in reducing front-end collisions and rear-end accidents. Unfortunately, avoiding side collisions is a challenging problem for AEB. To tackle these challenges, we propose active seat belt pretensioning on driver injury in vehicles equipped with AEB in unavoidable side crashes. Firstly, records of impact cases from China’s National Automobile Accident In-Depth Investigation System were used to investigate a scenario in which a vehicle is impacted by an oncoming car after the vehicle’s AEB system is triggered. The scenario was created using PreScan software. Then, the simulated vehicles in the side impact were devised using a finite element model of the Toyota Yaris and a moving barrier. These were constructed in HyperMesh software along with models of the driver’s side seatbelt, side airbag, and side curtain airbag. Moreover, the models were verified, and driver out-of-position instances and injuries were evaluated in simulations with different AEB intensities up to 0.7 g for three typical side impact angles. Last but not least, the optimal combination of seatbelt pretensioning and the timing thereof for minimizing driver injury at each side impact angle was identified using orthogonal tests; immediate (at 0 ms) pretensioning at 80 N was applied. Our experiments show that our active seatbelt with the above parameters reduced the weighted injury criterion by 5.94%, 22.05%, and 20.37% at impact angles of 90°, 105°, and 120°, respectively, compared to that of a conventional seatbelt. The results of the experiment can be used as a reference to appropriately set the collision parameters of active seat belts for vehicles with AEB.
New Mg 2 Si based alloy were prepared by mechanical alloying. Sintering temperature was from 825 to 865K, which indicated that few Mg 2 Si were produced at lower temperature while MgO were produced at higher temperature. Microstructure image showed that at sintering temperature of 855K, Mg 2 Si were mostly synthesized with the reaction of purity magnesia powder and silicon powder. Hardness and wear tests proved that the new synthetic silicon magnesium alloy had higher hardness and good wear resistance. Under the same testing conditions, it is found that the hardness of the new material is 420.50, and pure magnesium is only 41.65.In the same experiments it is also found that under the same pressure, pure magnesium alloys than silicon wearing capacity of pure magnesium is 2 times as high that of Mg 2 Si based alloy. It shows that Mg 2 Si based alloy is the ideal material for the wear parts of car engine cylinder liner because of its small density, stable dimension, high hardness and wear-resisting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.