Background
Exosomes are nanoscale membrane vesicles secreted by both normal and cancer cells, and cancer cell-derived exosomes play an important role in the cross-talk between cancer cells and other cellular components in the tumor microenvironment. Mesenchymal stem cells (MSCs) have tropism for tumors and have been used as tumor-tropic vectors for tumor therapy; however, the safety of such therapeutic use of MSCs is unknown. In this study, we investigated the role of glioma cell-derived exosomes in the tumor-like phenotype transformation of human bone marrow mesenchymal stem cells (hBMSCs) and explored the underlying molecular mechanisms.
Methods
The effect of exosomes from U251 glioma cells on the growth of hBMSCs was evaluated with the CCK-8 assay, KI67 staining, and a cell cycle distribution assessment. The migration and invasion of hBMSCs were evaluated with a Transwell assay. A proteomics and bioinformatics approach, together with Western blotting and reverse transcriptase-polymerase chain reaction, was used to investigate the effect of U251 cell-derived exosomes on the proteome of hBMSCs.
Results
U251 cell-derived exosomes induced a tumor-like phenotype in hBMSCs by enhancing their proliferation, migration, and invasion and altering the production of proteins involved in the regulation of the cell cycle. Moreover, U251 cell-derived exosomes promoted the production of the metastasis-related proteins MMP-2 and MMP-9, glioma marker GFAP, and CSC markers (CD133 and Nestin). The ten differentially expressed proteins identified participated in several biological processes and exhibited various molecular functions, mainly related to the inactivation of glycolysis. Western blotting showed that U251 cell-derived exosomes upregulated the levels of Glut-1, HK-2, and PKM-2, leading to the induction of glucose consumption and generation of lactate and ATP. Treatment with 2-deoxy-
d
-glucose significantly reversed these effects of U251 cell-derived exosomes on hBMSCs.
Conclusions
Our data demonstrate that glioma cell-derived exosomes activate glycolysis in hBMSCs, resulting in their tumor-like phenotype transformation. This suggests that interfering with the interaction between exosomes and hBMSCs in the tumor microenvironment has potential as a therapeutic approach for glioma.
Graphical abstract
ᅟ
β-sitosterol (BS), a major bioactive constituent present in plants, has shown potent anti-cancer activity against many human cancer cells, but its activity in pancreatic cancer (PC) cells has rarely been reported. Gemcitabine (GEM) is one of the first-line drugs for PC therapy, however, the treatment effect is not sustained due to prolonged drug resistance. In this study, we firstly studied the anti-PC activity and the mechanism of BS alone and in combination with GEM in vitro and in vivo. BS effectively inhibited the growth of PC cell lines by inhibiting proliferation, inducing G0/G1 phase arrest and apoptosis, suppressed the NF- kB activity, and increased expression of the protein Bax but decreased expression of the protein Bcl-2. Moreover, BS inhibited migration and invasion and downregulated epithelial–mesenchymal transition (EMT) markers and AKT/GSK-3β signaling pathways. Furthermore, the combination of BS and GEM exhibited a significant synergistic effect in MIAPaCa-2 and BXPC-3 cells. More importantly, the combined treatment with BS and GEM lead to significant growth inhibition of PC xenografts. Overall, our data revealed a promising treatment option for PC by the combination therapy of BS and GEM.
In the original article, there was a mistake in Figures 2,3,6 and 7 as published. The incorrect images were erroneously inserted. Firstly, the label of S and G2/M were marked reversed in Figures 2A,B and 6. Besides, one picture was mistakenly showed in Figure 6.In addition, due to the carelessness of the picture combination and image processing, in Figure 3A and Figure 7A,D, some pictures were mistakenly placed. The corrected Figures 2,3,6 and 7 appears below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
Background
SMARCAs, belonged to SWI/SNF2 subfamilies, are critical to cellular processes due to their modulation of chromatin remodeling processes. Although SMARCAs are implicated in the tumor progression of various cancer types, our understanding of how those members affect pancreatic carcinogenesis is quite limited and improving this requires bioinformatics analysis and biology approaches.
Methods
To address this issue, we investigated the transcriptional and survival data of SMARCAs in patients with pancreatic cancer using ONCOMINE, GEPIA, Human Protein Atlas, and Kaplan–Meier plotter. We further verified the effect of significant biomarker on pancreatic cancer in vitro through functional experiment.
Results
The Kaplan–Meier curve and log-rank test analyses showed a positive correlation between SMARCA1/2/3/SMARCAD1 and patients’ overall survival (OS). On the other hand, mRNA expression of SMARCA6 (also known as HELLS) showed a negative correlation with OS. Meanwhile, no significant correlation was found between SMARCA4/5/SMARCAL1 and tumor stages and OS. The knockdown of HELLS impaired the colony formation ability, and inhibited pancreatic cancer cell proliferation by arresting cells at S phase.
Conclusions
Data mining analysis and cell function research demonstrated that HELLS played oncogenic roles in the development and progression of pancreatic cancer, and serve as a poor prognostic biomarker for pancreatic cancer. Our work laid a foundation for further clinical applications of HELLS in pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.