The root cause of the insecurity for smart devices is the potential vulnerabilities in smart devices. There are many approaches to find the potential bugs in smart devices. Fuzzing is the most effective vulnerability finding technique, especially the coverage-guided fuzzing. The coverage-guided fuzzing identifies the high-quality seeds according to the corresponding code coverage triggered by these seeds. Existing coverage-guided fuzzers consider that the higher the code coverage of seeds, the greater the probability of triggering potential bugs. However, in real-world applications running on smart devices or the operation system of the smart device, the logic of these programs is very complex. Basic blocks of these programs play a different role in the process of application exploration. This observation is ignored by existing seed selection strategies, which reduces the efficiency of bug discovery on smart devices. In this paper, we propose a contribution-aware coverage-guided fuzzing, which estimates the contributions of basic blocks for the process of smart device exploration. According to the control flow of the target on any smart device and the runtime information during the fuzzing process, we propose the static contribution of a basic block and the dynamic contribution built on the execution frequency of each block. The contribution-aware optimization approach does not require any prior knowledge of the target device, which ensures our optimization adapting gray-box fuzzing and white-box fuzzing. We designed and implemented a contribution-aware coverage-guided fuzzer for smart devices, called StFuzzer. We evaluated StFuzzer on four real-world applications that are often applied on smart devices to demonstrate the efficiency of our contribution-aware optimization. The result of our trials shows that the contribution-aware approach significantly improves the capability of bug discovery and obtains better execution speed than state-of-the-art fuzzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.