The conventional wisdom has been that IP is the natural protocol layer for implementing multicast related functionality. However, ten years after its initial proposal, IP Multicast is still plagued with concerns pertaining to scalability, network management, deployment and support for higher layer functionality such as error, flow and congestion control. In this paper, we explore an alternative architecture for small and sparse groups, where end systems implement all multicast related functionality including membership management and packet replication. We call such a scheme End System Multicast. This shifting of multicast support from routers to end systems has the potential to address most problems associated with IP Multicast. However, the key concern is the performance penalty associated with such a model. In particular, End System Multicast introduces duplicate packets on physical links and incurs larger end-to-end delay than IP Multicast. In this paper, we study this question in the context of the Narada protocol. In Narada, end systems self-organize into an overlay structure using a fully distributed protocol. In addition, Narada attempts to optimize the efficiency of the overlay based on end-to-end measurements. We present details of Narada and evaluate it using both simulation and Internet experiments. Preliminary results are encouraging. In most simulations and Internet experiments, the delay and bandwidth penalty are low. We believe the potential benefits of repartitioning multicast functionality between end systems and routers significantly outweigh the performance penalty incurred.
Video traffic already represents a significant fraction of today's traffic and is projected to exceed 90% in the next five years. In parallel, user expectations for a high quality viewing experience (e.g., low startup delays, low buffering, and high bitrates) are continuously increasing. Unlike traditional workloads that either require low latency (e.g., short web transfers) or high average throughput (e.g., large file transfers), a high quality video viewing experience requires sustained performance over extended periods of time (e.g., tens of minutes). This imposes fundamentally different demands on content delivery infrastructures than those envisioned for traditional traffic patterns. Our large-scale measurements over 200 million video sessions show that today's delivery infrastructure fails to meet these requirements: more than 20% of sessions have a rebuffering ratio ≥ 10% and more than 14% of sessions have a video startup delay ≥ 10s. Using measurement-driven insights, we make a case for a video control plane that can use a global view of client and network conditions to dynamically optimize the video delivery in order to provide a high quality viewing experience despite an unreliable delivery infrastructure. Our analysis shows that such a control plane can potentially improve the rebuffering ratio by up to 2× in the average case and by more than one order of magnitude under stress.
As the distribution of the video over the Internet becomes mainstream and its consumption moves from the computer to the TV screen, user expectation for high quality is constantly increasing. In this context, it is crucial for content providers to understand if and how video quality affects user engagement and how to best invest their resources to optimize video quality. This paper is a first step towards addressing these questions. We use a unique dataset that spans different content types, including short video on demand (VoD), long VoD, and live content from popular video content providers. Using client-side instrumentation, we measure quality metrics such as the join time, buffering ratio, average bitrate, rendering quality, and rate of buffering events.We quantify user engagement both at a per-video (or view) level and a per-user (or viewer) level. In particular, we find that the percentage of time spent in buffering (buffering ratio) has the largest impact on the user engagement across all types of content. However, the magnitude of this impact depends on the content type, with live content being the most impacted. For example, a 1% increase in buffering ratio can reduce user engagement by more than three minutes for a 90-minute live video event. We also see that the average bitrate plays a significantly more important role in the case of live content than VoD content.
This paper compares six new queue service disciplines that can be implemented at the output queues of switches in a connection-oriented packet switched data network. These are Virtual Clock, Fair Queueing, Delay-Earliest-Due-Date, Jitter-Earliest-Due-Date, Stop-and-Go and Hierarchical Round Robin. We describe their mechanisms, their similarities and diierences, and some implementation strategies. In particular, we show w h y e a c h discipline can or cannot provide bandwidth, delay and delay jitter guarantees. This leads to some interesting conclusions about the relative strengths and weaknesses of each approach.
Improving users' quality of experience (QoE) is crucial for sustaining the advertisement and subscription based revenue models that enable the growth of Internet video. Despite the rich literature on video and QoE measurement, our understanding of Internet video QoE is limited because of the shift from traditional methods of measuring video quality (e.g., Peak Signal-to-Noise Ratio) and user experience (e.g., opinion scores). These have been replaced by new quality metrics (e.g., rate of buffering, bitrate) and new engagement-centric measures of user experience (e.g., viewing time and number of visits). The goal of this paper is to develop a predictive model of Internet video QoE. To this end, we identify two key requirements for the QoE model: (1) it has to be tied in to observable user engagement and (2) it should be actionable to guide practical system design decisions. Achieving this goal is challenging because the quality metrics are interdependent, they have complex and counter-intuitive relationships to engagement measures, and there are many external factors that confound the relationship between quality and engagement (e.g., type of video, user connectivity). To address these challenges, we present a data-driven approach to model the metric interdependencies and their complex relationships to engagement, and propose a systematic framework to identify and account for the confounding factors. We show that a delivery infrastructure that uses our proposed model to choose CDN and bitrates can achieve more than 20% improvement in overall user engagement compared to strawman approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.