Wireless power transmission efficiency and ripple interference attract more and more attention nowadays, but in some special metal environments the transmission efficiency of wireless power will be greatly influenced. In some practical engineering application, we need to use wireless energy to power the sensor on the high speed rotating parts. In order to improve the transmission efficiency and quality of the wireless power supply, researches are conducted to evaluate the eddy current loss and electromagnetic interference of wireless power in high-speed rotating component parameter test system. In this paper, electromagnetic coupling wireless power supply system is established as the transmission model. Then the analytical expressions of eddy current loss are derived by solving Maxwell’s equations, and after that the eddy current loss characteristics is analyzed by combining with the electromagnetic coupling model and eddy current losses model in metal medium. To verify the theoretical results, Maxwell electromagnetic field simulation software is used to analyze the characteristics of the eddy current. Finally, experiments are carried out to illustrate the effect of ferrite magnetic shielding material on the eddy current loss and the shielding effect on the external electromagnetic interference in the metal shaft environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.