The outbreaks of the infectious disease COVID-19 caused by SARS-CoV-2 seriously threatened the life of humans. A rapid, reliable and specific detection method was urgently needed. Herein, we reported a contamination-free visual detection method for SARS-CoV-2 with LAMP and CRISPR/Cas12a technology. CRISPR/Cas12a reagents were pre-added on the inner wall of the tube lid. After LAMP reaction, CRISPR/Cas12a reagents were flowed into the tube and mixed with amplicon solution by hand shaking, which can effectively avoid possible amplicon formed aerosol contamination caused by re-opening the lid after amplification. CRISPR/Cas12a can highly specific recognize target sequence and discriminately cleave single strand DNA probes (5′-6FAM 3′-BHQ1). With smart phone and portable 3D printing instrument, the produced fluorescence can be seen by naked eyes without any dedicated instruments, which is promising in the point-of-care detection. The whole amplification and detection process could be completed within 40 min with high sensitivity of 20 copies RNA of SARS-CoV-2. This reaction had high specificity and could avoid cross-reactivity with other common viruses such as influenza virus. For 7 positive and 3 negative respiratory swab samples provided by Zhejiang Provincial Center for Disease Control and Prevention, our detection results had 100% positive agreement and 100% negative agreement, which demonstrated the accuracy and application prospect of this method.
Dengue, a mosquito-borne disease caused by the dengue virus (DV), has been recognized as a global public health threat. In 2017, an unexpected dengue outbreak occurred in Zhejiang, China. To clarify and characterize the causative agent of this outbreak, data on dengue fever cases were collected from the China Information System for Disease Control and Prevention in Zhejiang province for subsequent epidemiological analysis. A total of 1,229 cases were reported, including 1,149 indigenous and 80 imported cases. Most indigenous cases (1,128 cases) were in Hangzhou. The epidemic peak occurred in late August and early September, and the incidence rate of elderly people (4.34 per 100,000) was relatively high. Imported cases were reported all year round, and most were from South-East Asia and Western Pacific regions. Young people and men accounted for a large fraction of the cases. Acute phase serums of patients were collected for virus isolation. And 35 isolates (including 25 DV-2, 8 DV-1, 1 DV-3, and 1 DV-4) were obtained after inoculation and culture in mosquito C6/36 cells. The E genes of the 35 new DV isolates and the complete genome of a DV-2 isolate (Zhejiang/HZ33/2017), and the E gene of a DV-2 isolate from Ae. albopictus (Zhejiang/Aedes-1/2017) were determined. Phylogenetic analyses were performed using the neighbor-joining method with the Tajima-Nei model. Phylogenetically, DVs of all four serotypes with multiple genotypes (mainly including 21 Cosmopolitan genotype DV-2, 4 Asian I genotype DV-2, 6 genotype I DV-1, and 2 genotype V DV-1) were present in the indigenous and imported cases in Zhejiang during the same period. Most of the isolates probably originated from South-East Asia and Western Pacific countries. The imported cases, high density of mosquito vector, and missed diagnosis might contribute to the 2017 outbreak in Zhejiang.
A reliable disease model mimicking Enterovirus 71 (EV71) infection in humans is essential for understanding pathogenesis and for developing a safe and effective vaccine. Commonly used rodent models including mouse or rat models are not suitable for vaccine evaluation because the rodents are resistant to EV71 infection after they reach the age of 6 days. In this study, 21-day-old gerbils inoculated intraperitoneally (IP) with a non mouse-adapted EV71 strain developed neurological lesion-related signs including hind limb paralysis, slowness, ataxia and lethargy similar to those of central nervous system (CNS) infection of EV71 in humans. The infected gerbils eventually died of the neurological lesions and EV71 could be isolated from lung, liver, spleen, kidney, heart, spinal cord, brain cortex, brainstem and skeletal muscle. Significantly high virus replication was detected in spinal cord, brainstem and skeletal muscle by cellular analysis, real-time quantitative PCR (RT-PCR) and immunohistochemical staining. Histopathologic changes such as neuronal degeneration, neuronal loss and neuronophagia were observed in spinal cord, brain cortex, brainstem, and skeletal muscle along with necrotizing myositis and splenic atrophy. Gerbils that received two doses of inactive whole-virus vaccine showed no EV71-specific symptoms after challenged with EV71. In contrast, gerbils that received mock vaccination died of EV71-induced neuropathology after challenged with EV71. The result indicates that gerbils can serve as a reliable disease model for evaluating safety and efficacy of EV71 vaccine.
Insulin-like peptides (ILPs) including insulin, insulin-like growth factor (IGF) and relaxin are evolutionarily conserved hormones in metazoans, and they are involved in diverse physiological processes. The migratory brown planthopper (BPH), Nilaparvata lugens, encodes four ILP genes (Nlilp1, Nlilp2, Nlilp3 and Nlilp4) but their physiological roles are largely unknown. Sequence analysis showed that NlILP1 contained a relaxinspecific G protein-coupled receptor-binding motif and a variant motif of cysteine residues, and NlILP2 and NlILP4 resembled vertebrate IGFs. RNA interference (RNAi)-mediated gene silencing showed that depletion of each of Nlilp1, 2 and 3 significantly delayed the developmental duration of nymphs, and this effect could be exacerbated by double or triple gene depletion. Depletion of Nlilp1, Nlilp2 or Nlilp3 induces the accumulation of glucose, trehalose and glycogen, which is contradictory to depletion of the insulin receptor (NlInR1) in the BPH. Depletion of Nlilp1 significantly enhanced starvation resistance in both females and males although its extent was smaller than NlInR1 depletion. A parental RNAi assay showed that depletion of each of Nlilp1-4 dramatically impaired female fecundity. These findings indicate that NlILP1-4 have redundant and distinct roles in physiological processes in the BPH, thereby enhancing our understanding of the contribution of each NlILP to the ecological success of this species in natural habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.