We applied logistic regression and Random Forest to evaluate drivers of fire occurrence on a provincial scale. Potential driving factors were divided into two groups according to scale of influence: ‘climate factors’, which operate on a regional scale, and ‘local factors’, which includes infrastructure, vegetation, topographic and socioeconomic data. The groups of factors were analysed separately and then significant factors from both groups were analysed together. Both models identified significant driving factors, which were ranked in terms of relative importance. Results show that climate factors are the main drivers of fire occurrence in the forests of Fujian, China. Particularly, sunshine hours, relative humidity (fire seasonal and daily), precipitation (fire season) and temperature (fire seasonal and daily) were seen to play a crucial role in fire ignition. Of the local factors, elevation, distance to railway and per capita GDP were found to be most significant. Random Forest demonstrated a higher predictive ability than logistic regression across all groups of factors (climate, local, and climate and local combined). Maps of the likelihood of fire occurrence in Fujian illustrate that the high fire-risk zones are distributed across administrative divisions; consequently, fire management strategies should be devised based on fire-risk zones, rather than on separate administrative divisions.
Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR) and Random Forests (RF) to identify important biophysical and anthropogenic factors that help to explain the likelihood of anthropogenic fires in the Chinese boreal forest. Results showed that the anthropogenic fires were more likely to occur at areas close to railways and were significantly influenced by forest types. In addition, distance to settlement and distance to road were identified as important predictors for anthropogenic fire occurrence. The model comparison indicated that RF had greater ability than LR to predict forest fires caused by human activity in the Chinese boreal forest. High fire risk zones in the study area were identified based on RF, where we recommend increasing allocation of fire management resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.