BackgroundDeregulations of long non-coding RNAs (lncRNAs) have been implicated in cancer initiation and progression. Current methods can only capture differential expression of lncRNAs at the population level and ignore the heterogeneous expression of lncRNAs in individual patients.MethodsWe propose a method (LncRIndiv) to identify differentially expressed (DE) lncRNAs in individual cancer patients by exploiting the disrupted ordering of expression levels of lncRNAs in each disease sample in comparison with stable normal ordering. LncRIndiv was applied to lncRNA expression profiles of lung adenocarcinoma (LUAD). Based on the expression profile of LUAD individual-level DE lncRNAs, we used a forward selection procedure to identify prognostic signature for stage I-II LUAD patients without adjuvant therapy.ResultsIn both simulated data and real pair-wise cancer and normal sample data, LncRIndiv method showed good performance. Based on the individual-level DE lncRNAs, we developed a robust prognostic signature consisting of two lncRNA (C1orf132 and TMPO-AS1) for stage I-II LUAD patients without adjuvant therapy (P = 3.06 × 10−6, log-rank test), which was confirmed in two independent datasets of GSE50081 (P = 1.82 × 10−2, log-rank test) and GSE31210 (P = 7.43 × 10−4, log-rank test) after adjusting other clinical factors such as smoking status and stages. Pathway analysis showed that TMPO-AS1 and C1orf132 could affect the prognosis of LUAD patients through regulating cell cycle and cell adhesion.Conclusions LncRIndiv can successfully detect DE lncRNAs in individuals and be applied to identify prognostic signature for LUAD patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0666-z) contains supplementary material, which is available to authorized users.
Results from numerous studies suggest an important role for somatic copy number alterations (SCNAs) in cancer progression. Our work aimed to identify the drivers (oncogenes or tumor suppressor genes) that reside in recurrently aberrant genomic regions, including a large number of genes or non‐coding genes, which remain a challenge for decoding the SCNAs involved in carcinogenesis. Here, we propose a new approach to comprehensively identify drivers, using 8740 cancer samples involving 18 cancer types from The Cancer Genome Atlas (TCGA). On average, 84 drivers were revealed for each cancer type, including protein‐coding genes, long non‐coding RNAs (lncRNA) and microRNAs (miRNAs). We demonstrated that the drivers showed significant attributes of cancer genes, and significantly overlapped with known cancer genes, including MYC, CCND1 and ERBB2 in breast cancer, and the lncRNA PVT1 in multiple cancer types. Pan‐cancer analyses of drivers revealed specificity and commonality across cancer types, and the non‐coding drivers showed a higher cancer‐type specificity than that of coding drivers. Some cancer types from different tissue origins were found to converge to a high similarity because of the significant overlap of drivers, such as head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC). The lncRNA SOX2‐OT, a common driver of HNSC and LUSC, showed significant expression correlation with the oncogene SOX2. In addition, because some drivers are common in multiple cancer types and have been targeted by known drugs, we found that some drugs could be successfully repositioned, as validated by the datasets of drug response assays in cell lines. Our work reported a new method to comprehensively identify drivers in SCNAs across diverse cancer types, providing a feasible strategy for cancer drug repositioning as well as novel findings regarding cancer‐associated non‐coding RNA discovery.
Long non-coding RNAs (lncRNAs) play key regulatory roles in breast cancer. However, population-level differential expression analysis methods disregard the heterogeneous expression of lncRNAs in individual patients. Therefore, we individualized lncRNA expression profiles for breast invasive carcinoma (BRCA) using the method of LncRNA Individualization (LncRIndiv). After evaluating the robustness of LncRIndiv, we constructed an individualized differentially expressed lncRNA (IDElncRNA) profile for BRCA and investigated the subtype-specific IDElncRNAs. The breast cancer subtype-specific IDElncRNA showed frequent co-occurrence with alterations of protein-coding genes, including mutations, copy number variation and differential methylation. We performed hierarchical clustering to subdivide TNBC and revealed mesenchymal subtype and immune subtype for TNBC. The TNBC immune subtype showed a better prognosis than the TNBC mesenchymal subtype. LncRNA PTOV1-AS1 was the top differentially expressed lncRNA in the mesenchymal subtype. And biological experiments validated that the upregulation of PTOV1-AS1 could downregulate TJP1 (ZO-1) and E-Cadherin, and upregulate Vimentin, which suggests PTOV1-AS1 may promote epithelial-mesenchymal transition and lead to migration and invasion of TNBC cells. The mesenchymal subtype showed a higher fraction of M2 macrophages, whereas the immune subtype was more associated with CD4 + T cells. The immune subtype is characterized by genomic instability and upregulation of immune checkpoint genes, thereby suggesting a potential response to immunosuppressive drugs. Last, drug response analysis revealed lncRNA ENSG00000230082 (PRRT3-AS1) is a potential resistance biomarker for paclitaxel in BRCA treatment. Our analysis highlights that IDElncRNAs can characterize inter-tumor heterogeneity in BRCA and the new TNBC subtypes indicate novel insights into TNBC immunotherapy.
Synthetic lethal (SL) interactions occur when alterations in two genes lead to cell death but alteration in only one of them is not lethal. SL interactions provide a new strategy for molecular-targeted cancer therapy. Currently, there are few drugs targeting SL interactions that entered into clinical trials. Therefore, it is necessary to investigate the link between SL interactions and drug sensitivity of cancer cells systematically for drug development purpose. We identified SL interactions by integrating the high-throughput data from The Cancer Genome Atlas, small hairpin RNA data and genetic interactions of yeast. By integrating SL interactions from other studies, we tested whether the SL pairs that consist of drug target genes and the genes with genomic alterations are related with drug sensitivity of cancer cells. We found that only 6.26%∼34.61% of SL interactions showed the expected significant drug sensitivity using the pooled cancer cell line data from different tissues, but the proportion increased significantly to approximately 90% using the cancer cell line data for each specific tissue. From an independent pharmacogenomics data of 41 breast cancer cell lines, we found three SL interactions (ABL1-IFI16, ABL1-SLC50A1 and ABL1-SYT11) showed significantly better prognosis for the patients with both genes being altered than the patients with only one gene being altered, which partially supports the SL effect between the gene pairs. Our study not only provides a new way for unraveling the complex mechanisms of drug sensitivity but also suggests numerous potentially important drug targets for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.