Although the size effect in ferroelectric thin films has been known for long time, the underlying mechanism is not yet fully understood and whether or not there is a critical thickness below which the ferroelectricity vanishes is still under debate. Here, we directly measure the thickness-dependent polarization in ultrathin PbZr0.2Ti0.8O3 films via quantitative annular bright field imaging. We find that the polarization is significantly suppressed for films <10-unit cells thick (∼4 nm). However, approximately the polarization never vanishes. The residual polarization is ∼16 μCcm−2 (∼17%) at 1.5-unit cells (∼0.6 nm) thick film on bare SrTiO3 and ∼22 μCcm−2 at 2-unit cells thick film on SrTiO3 with SrRuO3 electrode. The residual polarization in these ultrathin films is mainly attributed to the robust covalent Pb–O bond. Our atomic study provides new insights into mechanistic understanding of nanoscale ferroelectricity and the size effects.
In this work, in order to enhance the performance of graphene gas sensors, graphene and metal oxide nanoparticles (NPs) are combined to be utilized for high selectivity and fast response gas detection. Whether at the relatively optimal temperature or even room temperature, our gas sensors based on graphene transistors, decorated with SnO2 NPs, exhibit fast response and short recovery times (∼1 seconds) at 50 °C when the hydrogen concentration is 100 ppm. Specifically, X-ray photoelectron spectroscopy and conductive atomic force microscopy are employed to explore the interface properties between graphene and SnO2 NPs. Through the complimentary characterization, a mechanism based on charge transfer and band alignment is elucidated to explain the physical originality of these graphene gas sensors: high carrier mobility of graphene and small energy barrier between graphene and SnO2 NPs have ensured a fast response and a high sensitivity and selectivity of the devices. Generally, these gas sensors will facilitate the rapid development of next-generation hydrogen gas detection.
A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T 0 ) representing 10 independent events were characterized. Seven of the 10 independent T 0 events co-expressed GUS. Progeny analysis was conducted by sowing the T 1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T 1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mg l 21 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.