Oxidative stress is an important pathogenic mechanism in degenerative diseases such as Alzheimer’s disease. Although ginsenoside compound K (CK) is protective against neuronal oxidative damage, the underlying mechanism remains to be understood. In this study, the protective effects of ginsenoside CK against oxidative stress damage induced by hydrogen peroxide in HT22 cells were investigated with 1H nuclear magnetic resonance (1H-NMR)-based metabolomics. The optimal CK concentration for decreasing oxidative stress damage in nerves was determined with MTT assays. CK (8 μM) significantly increased the HT22 cell survival rate after the model was established. Cell lysates were subjected to 1H-NMR metabolomics, western blotting, and ATP assays for verification. Metabolic perturbation occurred in HT22 cells in the model group but not the control group. Twenty biomarkers were identified and used to analyze metabolic pathways. CK reversed metabolic changes in HT22 cells by altering taurine, glutamate, glycine, and glutathione metabolism. Subsequently, CK increased ATP content and the expression of components of the PI3K/AKT signaling pathway in HT22 cells. These findings demonstrated that CK prevents oxidative stress damage and protects nerves by regulating energy-metabolism pathways, such as those of taurine, glutamate, and other amino acids, thus providing a rationale for the use of CK in Alzheimer’s disease treatment.
Diabetic cardiomyopathy (DCM) is one of the many complications of diabetes. DCM leads to cardiac insufficiency and myocardial remodeling and is the main cause of death in diabetic patients. Abnormal lipid metabolism plays an important role in the occurrence and development of DCM. Huangqi Shengmai Yin (HSY) has previously been shown to alleviate signs of heart disease. Here, we investigated whether HSY could improve cardiomyopathy caused by type 1 diabetes mellitus (T1DM) and improve abnormal lipid metabolism in the diabetic heart. Streptozotocin (STZ) was used to establish the T1DM mouse model, and T1DM mice were subsequently treated with HSY for eight weeks. The changes in the cardiac conduction system, histopathology, blood myocardial injury indices, and lipid content and expression of proteins related to lipid metabolism were evaluated. Our results showed that HSY could improve electrocardiogram; decrease the serum levels of CK-MB, LDH, and BNP; alleviate histopathological changes in cardiac tissue; and decrease myocardial lipid content in T1DM mice. These results indicate that HSY has a protective effect against T1DM-induced myocardial injury in mice and that this effect may be related to the improvement in myocardial lipid metabolism.
Myocardial fibrosis (MF) is an important pathological process in which a variety of cardiovascular diseases transform into heart failure. The main manifestation of MF is the excessive deposition of collagen in the myocardium. Here, we explored whether Huangqi Shengmai Yin (HSY) can inhibit isoprenaline (ISO)-induced myocardial collagen deposition in rats, thereby reducing the cardiac dysfunction caused by MF. The results of echocardiography showed that HSY upregulated fractional shortening and ejection fraction, and reduced the left ventricular systolic dysfunction in the rats with MF. Pathological results showed that HSY protected myocardium, inhibited apoptosis, and effectively reduced collagen deposition. HSY also inhibited the expression of collagen I and III and α-smooth muscle actin (α-SMA) in the heart tissue. HSY increased the expression of Sirtuin 3 (Sirt3) and inhibited the protein levels of the components in the transforming growth factor-β (TGF-β)/Smad pathway. At the same time, it also regulated the expression of related proteins in the matrix metalloproteinases family. In summary, HSY played a therapeutic role in rats with ISO-induced MF by protecting myocardium and inhibiting collagen deposition. Therefore, HSY is a potential therapeutic agent for ameliorating MF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.