Hydrophilic tannic acid and hydrophobic resveratrol were successfully co-encapsulated in zein nanoparticles prepared using antisolvent precipitation and then coated with pectin by electrostatic deposition. The encapsulation efficiencies of the tannic acid and resveratrol were 51.5 ± 1.9% and 77.2 ± 3.2%, respectively. The co-encapsulated nanoparticles were stable against aggregation at the investigated pH range of 2.0 to 8.0 when heated at 80 °C for 2 h and when the NaCl concentration was below 50 mM. The co-encapsulated tannic acid and resveratrol exhibited stronger in vitro antioxidant activity than ascorbic acid, as determined by 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) and 2,2′-azinobis (3-ethylberizothiazoline-6-sulfonic acid) radical cation (ABTS+·) scavenging assays. The polyphenols-loaded nanoparticles significantly decreased the malondialdehyde (MDA) concentration and increased the superoxide dismutase (SOD) and catalase (CAT) activities in peroxide-treated human hepatoma cells (HepG2). An in vitro digestion model was used to study the gastrointestinal fate of the nanoparticles. In the stomach, encapsulation inhibited tannic acid release, but promoted resveratrol release. However, in the small intestine, it led to a relatively high bioaccessibility of 76% and 100% for resveratrol and tannic acid, respectively. These results suggest that pectin-coated zein nanoparticles have the potential for the co-encapsulation of both polar and nonpolar nutraceuticals or drugs.
For the non-Gaussian singular time-delayed stochastic distribution control (SDC) system with unknown external disturbance where the output probability density function (PDF) is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.
This paper has numerically studied the dynamical behaviors of a fractional-order single-machine infinite-bus (FOSMIB) power system. Periodic motions, perioddoubling bifurcations and chaotic attractors are observed in the FOSMIB power system. The existence of chaotic behavior is affirmed by the positive largest Lyapunov exponent (LLE). Based on the fractional-order backstepping method, an adaptive controller is proposed to suppress chaos in the FOSMIB power system. Numerical simulation results demonstrate the validity of the proposed controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.