Ophiocordyceps sinensis is a widely known medicinal entomogenous fungus, which parasitizes the soil-borne larva of Thitarodes (Hepialidae, Lepidoptera) distributed in the Qinghai–Tibetan Plateau and its adjacent areas. Previous research has involved artificial cultivation of Chinese cordyceps (the fungus-caterpillar complex), but it is difficult to achieve large-scale cultivation because the coupling relation between the crucial microbes and their hosts is not quite clear. To clarify the influence of the internal microbial community on the occurrence of Chinese cordyceps, in this study, the unfertilized eggs of Thitarodes of different sampling sites were chosen to analyze the bacterial and fungal communities via 16S rRNA and ITS sequencing for the first time. The results showed that for bacteria, 348 genera (dominant genera include Wolbachia, Spiroplasma, Carnobacterium, Sphingobium, and Acinetobacter) belonging to 26 phyla (dominant phyla include Proteobacteria, Firmicutes, Tenericutes, Actinobacteria, Acidobacteria, and Bacteroidetes), 58 classes, 84 orders, and 120 families were identified from 1294 operational taxonomic units (OTUs). The dominant bacterial genus (Spiroplasma) may be an important bacterial factor promoting the occurrence of Chinese cordyceps. For fungi, 289 genera, mainly including Aureobasidium, Candida, and Cryptococcus, were identified, and they belonged to 5 phyla (Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, and Zygomycota), 26 classes, 82 orders, and 165 families. Eight bacterial OTUs and 12 fungal OTUs were shared among all of the detected samples and were considered as core species. Among them, Wolbachia, Spiroplasma, Carnobacterium, Aureobasidium, and Phoma may play important roles in helping the host larva to digest foods, adapt to extreme environments, or resist pathogens. On the other hand, the external (soil) microbial community was synchronously and comparatively analyzed. Comparative analysis revealed that external microbial factors might play a more significant role in the occurrence of Chinese cordyceps, owing to the significant differences revealed by α-diversity and β-diversity analyses among different groups. In summary, the results of this study may contribute to the large-scale cultivation of Chinese cordyceps.
Bone scaffolds based on multi-components are the leading trend to address the multifaceted prerequisites to repair various bone defects. Chitosan is the most useable biopolymer, having excellent biological applications. Therefore, in the present study, the chitosan microsphere was prepared by the ion–gel method; transforming growth factor β (TGF-β1) and bone morphogenetic protein 2 (BMP-2) were loaded onto it and then combined with alginate/hyaluronic acid/collagen (Alg/HA/ICol) to construct a jawbones scaffold. The Alg/HA/ICol scaffolds were characterized by FTIR and SEM, and the water content, porosity, tensile properties, biocompatibility, and osteogenic-induced differentiation ability of the Alg/HA/ICol jawbones scaffolds were studied. The results indicate that a three-dimensional porous jawbone scaffold was successfully constructed having 100–250 μm of pore size and >90% of porosity without cytotoxicity against adipose-derived stem cells (ADSCs). Its ALP quantification, osteocalcin expression, and Von Kossamineralized nodule staining was higher than the control group. The jawbones scaffold constructed by TGF-β1 and BMP-2 loaded chitosan microsphere combining with Alg/HA/ICol has potential biomedical application in the future.
Background The large-scale artificial cultivation of Chinese cordyceps has not been widely implemented because the crucial factors triggering the occurrence of Chinese cordyceps have not been fully illuminated. Methods In this study, the bacterial and fungal structure of fertilized eggs in the host Thitarodes collected from 3 sampling sites with different occurrence rates of Chinese cordyceps (Sites A, B and C: high, low and null Chinese cordyceps, respectively) were analyzed by performing 16S RNA and ITS sequencing, respectively. And the intra-kingdom and inter-kingdom network were analyzed. Results For bacterial community, totally 4671 bacterial OTUs were obtained. α-diversity analysis revealed that the evenness of the eggs from site A was significantly higher than that of sites B and C, and the dominance index of site A was significantly lower than that of sites B and C ( P < 0.05). β-diversity analysis showed that the differences of bacterial community among the eggs from the three sampling sites were significantly different. OTU1 ( Wolbachia ) was the overwhelming predominant bacteria in the eggs from sites B and C. Although OTU4 ( Spiroplasma ) was detected in minor abundances, it showed distribution preference in the fertilized eggs from site A. For fungal community, totally 3318 fungal OTUs were obtained. Difference analysis showed significant differences among the three sites, while the differences were not as significant as that of bacterial community. In addition, ten fungal genera in the three most concerned Cordyceps families (Clavicipitaceae, Cordycipitaceae and Ophiocordycipitaceae) were detected in the fertilized eggs, while the most approved anamorph ( Hirsutella ) of Chinese cordyceps wasn’t discovered. Intra-kingdom (fungi) network analysis revealed more positive correlations and average degrees at sites A, and Inter-kingdom network analysis revealed more positive and negative correlations at sites A. Discussion The microbial community, especially the bacterial community in the fertilized eggs, might be significantly related with the occurrence of Chinese cordyceps, and Wolbachia might be the most significant microorganism negatively related with the occurrence. A closer correlation of the microbial community, especially closer fungal positive correlation, in the fertilized eggs might help for the occurrence of Chinese cordyceps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.