In this paper, Taylor’s floating air-backed plate (ABP) model is extended to the case of a submerged water-backed plate (WBP) within the acoustic range. The solution of the WBP is cast into the same format as that of the ABP with a modified fluid-structure interaction (FSI) parameter, which allows a unified analysis of the ABP and WBP using the same set of formulas. The influence of back conditions on fluid and structural dynamics, including fluid cavitation, is systematically investigated. Asymptotic limits are mathematically identified and physically interpolated. Results show that the WBP experiences lower equivalent pressure loading, reduced structural response, and hence lower peak momentum gaining. The time to reach peak momentum is shorter for the WBP than for the ABP. Cavitation is found to be almost inevitable for the ABP, while relevant to the WBP only for a small range of the FSI parameter. Implications to shock response of submerged structures are briefly discussed.
The material cannot be used for any other purpose without further permission of the publisher and is for private use only. There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.