Mitochondrial fission process 1 (MTFP1) is a novel nuclear‐encoded protein that promotes mitochondrial fission. Increasing lines of evidence indicate that increased mitochondrial fission is involved in carcinogenesis and tumor progression. However, the expression and biological effects of MTFP1 in cancer development is still unclear, especially in oral squamous cell carcinoma (OSCC). In this study, we first evaluated the expression of MTFP1 in 12‐paired OSCC tumor and peritumor tissues. We then explored the effects of MTFP1 knockdown or overexpression on cell growth by cell proliferation, colony formation, cell cycle, and cell apoptosis assays. Furthermore, the mechanisms by which MTFP1 promoted OSCC cell growth were explored. Our results showed that MTFP1 is frequently overexpressed in OSCC tissues. Functional experiments revealed that MTFP1 promoted the growth of OSCC cells by inducing the progression of cell cycle and suppressing cell apoptosis. Mechanistically, MTFP1 overexpression‐mediated mitochondrial fragmentation and subsequent ROS production was found to be involved in the promotion of OSCC cell growth. Collectively, our study demonstrates that MTFP1 plays a critical oncogenic role in OSCC carcinogenesis, which may serve as a potential therapeutic target in the treatment of this malignance.
Objective Waardenburg syndrome type 2 (WS2) is an autosomal dominant syndrome, characterized by bright blue eyes, hearing loss, and depigmented patches of hair and skin. It exhibits high phenotypic and genetic heterogeneity. We explored the molecular etiology in a Chinese family with WS2. Methods We recruited a three-generation family with three affected members. Medical history was obtained from all family members who underwent detailed physical examinations and audiology tests. Genomic DNA was extracted from peripheral blood of each individual, and 139 candidate genes associated with hearing loss were sequenced using Illumina HiSeq 2000 (Illumina Inc., San Diego, CA, USA) and verified by Sanger sequencing. Results Genetic evaluation revealed a novel nonsense heterozygous variant, NM_006941.4: c.342G>A (p.Trp114Ter) in exon 2 of the SOX10 gene in the three affected patients; no unaffected family member carried the variation. We did not detect the variation in 500 Chinese individuals with normal hearing or in 122 unrelated Chinese families with hearing loss, suggesting that it was specific to our patients. Conclusions We identified a novel heterozygous nonsense variation in a family with syndromic hearing loss and WS2. Our findings expand the pathogenic spectrum and strengthen the clinical diagnostic role of SOX10 in patients with WS2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.