Landslide classification and identification along Karakorum Highway (KKH) is still challenging due to constraints of proposed approaches, harsh environment, detail analysis, complicated natural landslide process due to tectonic activities, and data availability problems. A comprehensive landslide inventory and a landslide susceptibility mapping (LSM) along the Karakorum Highway were created in recent research. The extreme gradient boosting (XGBoost) and random forest (RF) models were used to compare and forecast the association between causative parameters and landslides. These advanced machine learning (ML) models can measure environmental issues and risks for any area on a regional scale. Initially, 74 landslide locations were determined along the KKH to prepare the landslide inventory map using different data. The landslides were randomly divided into two sets for training and validation at a proportion of 7/3. Fifteen landslide conditioning variables were produced for susceptibility mapping. The interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technique investigated the deformation movement of extracted models in the susceptible zones. It revealed a high line of sight (LOS) deformation velocity in both models’ sensitive zones. For accuracy comparison, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve approach was used, which showed 93.44% and 92.22% accuracy for XGBoost and RF, respectively. The XGBoost method produced superior results, combined with PS-InSAR results to create a new LSM for the area. This improved susceptibility model will aid in mitigating the landslide disaster, and the results may assist in the safe operation of the highway in the research area.
Automatic remote sensing (RS) image to map translation is a crucial technology for intelligent tile map generation. Although existing methods based on a generative network (GAN) generated unannotated maps at a single level, they have limited capacity in handling multi-resolution map generation at different levels. To address the problem, we proposed a novel conditional scale-consistent generation network (CscGAN) to simultaneously generate multi-level tile maps from multi-scale RS images, using only a single and unified model. Specifically, the CscGAN first uses the level labels and map annotations as prior conditions to guide hierarchical feature learning with different scales. Then, a multi-scale discriminator and two multi-scale generators are introduced to describe both high-resolution and low-resolution representations, aiming to improve the similarity of generated maps and thus produce high-quality multi-level tile maps. Meanwhile, a level classifier is designed for further exploring the characteristics of tile maps at different levels. Moreover, the CscGAN is optimized by jointly multi-scale adversarial loss, level classification loss, and scale-consistent loss in an end-to-end manner. Extensive experiments on multiple datasets and study areas demonstrate that the CscGAN outperforms the state-of-the-art methods in multi-level map translation, with great robustness and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.