Land subsidence is a major concern in vastly growing metropolitans worldwide. The most serious risks in this scenario are linked to groundwater extraction and urban development. Pakistan’s fourth-largest city, Rawalpindi, and its twin Islamabad, located at the northern edge of the Potwar Plateau, are witnessing extensive urban expansion. Groundwater (tube-wells) is residents’ primary daily water supply in these metropolitan areas. Unnecessarily pumping and the local inhabitant’s excessive demand for groundwater disturb the sub-surface’s viability. The Persistent Scatterer Interferometry Synthetic Aperture Radar (PS-InSAR) approach, along with Sentinel-1 Synthetic Aperture Radar (SAR) imagery, were used to track land subsidence in Rawalpindi-Islamabad. The SARPROZ application was used to study a set of Sentinel-1 imagery obtained from January 2019 to June 2021 along descending and ascending orbits to estimate ground subsidence in the Rawalpindi-Islamabad area. The results show a significant increase (−25 to −30 mm/yr) in subsidence from −69 mm/yr in 2019 to −98 mm/yr in 2020. The suggested approach effectively maps, detects, and monitors subsidence-prone terrains and will enable better planning, surface infrastructure building designs, and risk management related to subsidence.
Landslide classification and identification along Karakorum Highway (KKH) is still challenging due to constraints of proposed approaches, harsh environment, detail analysis, complicated natural landslide process due to tectonic activities, and data availability problems. A comprehensive landslide inventory and a landslide susceptibility mapping (LSM) along the Karakorum Highway were created in recent research. The extreme gradient boosting (XGBoost) and random forest (RF) models were used to compare and forecast the association between causative parameters and landslides. These advanced machine learning (ML) models can measure environmental issues and risks for any area on a regional scale. Initially, 74 landslide locations were determined along the KKH to prepare the landslide inventory map using different data. The landslides were randomly divided into two sets for training and validation at a proportion of 7/3. Fifteen landslide conditioning variables were produced for susceptibility mapping. The interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technique investigated the deformation movement of extracted models in the susceptible zones. It revealed a high line of sight (LOS) deformation velocity in both models’ sensitive zones. For accuracy comparison, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve approach was used, which showed 93.44% and 92.22% accuracy for XGBoost and RF, respectively. The XGBoost method produced superior results, combined with PS-InSAR results to create a new LSM for the area. This improved susceptibility model will aid in mitigating the landslide disaster, and the results may assist in the safe operation of the highway in the research area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.