Metal plate heating by new microflare burner has been studied experimentally and by CFD simulations, additionally, concentrations of NOx were measured to compare conventional and microflare burners. In addition, the article provides a numerical simulation of the combustion of a microflame burner. It has been demonstrated that microflare burners are more efficient and allows more uniform heating of metal plates. The comparison of NOx concentrations of conventional and microflare burners indicate better performance of the latter.
Currently, 90% of Kazakhstan’s oil is situated in 15 oil and gas fields where simple cycle gas turbines are utilized for electricity generation. The need for developing techniques to enhance the efficiency and eco-friendliness of fuel consumption in Kazakhstan’s oil fields is imperative. In this article, methods for improving the energy efficiency of a simple gas turbine power plant functioning in an oil field are discussed, with consideration given to the impact of ambient temperature and specific environmental constraints, such as water scarcity and high temperatures. Two schemes to increase efficiency are evaluated: the first involves the utilization of a waste heat boiler for steam production intended for technological purposes, while the second involves electricity generation through a combination of a waste heat boiler and a steam turbine. Models based on Aspen HYSYS were formulated, with actual gas turbine power plant operation taken into account. Analysis indicated that a waste heat boiler scheme could generate up to 350 t/h of steam, completely replacing power boilers. Im plementation of the combined cycle power plant (CCPP) system resulted in the production of up to 262.42 MW of electricity. Environmental analyses demonstrated that both schemes exhibit comparable specific emissions in terms of power generation, with 0.56 kgCO2/kWh for HRSG and 0.53 kgCO2/kWh for CCPP. Technological, environmental, and economic analyses were conducted to determine the most promising technology, considering the specifics of the oil fields in Kazakhstan. Based on the payback period for HRSG (4 years) and CCPP (7 years) options, it was deduced that the former is the most favorable for implementation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.