Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
Understanding the processes of immune regulation in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for improving treatment. Here, we performed longitudinal whole-transcriptome RNA sequencing on peripheral blood mononuclear cell (PBMC) samples from 18 patients with coronavirus disease 2019 (COVID-19) during their treatment, convalescence, and rehabilitation. After analyzing the regulatory networks of differentially expressed messenger RNAs (mRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) between the different clinical stages, we found that humoral immunity and type I interferon response were significantly downregulated, while robust T-cell activation and differentiation at the whole transcriptome level constituted the main events that occurred during recovery from COVID-19. The formation of this T cell immune response might be driven by the activation of activating protein-1 (AP-1) related signaling pathway and was weakly affected by other clinical features. These findings uncovered the dynamic pattern of immune responses and indicated the key role of T cell immunity in the creation of immune protection against this disease.
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.