A fully synthetic self-adjuvanting cancer vaccine candidate was constructed through covalent conjugation of invariant natural killer T (iNKT) cell ligand α-galactosylceramide (αGalCer) with sialyl Tn (STn), a representative tumor-associated carbohydrate antigen (TACA). This two-component vaccine STn-αGalCer is devoid of antigenic peptide, featuring the well-defined structure with high simplicity. STn-αGalCer showed remarkable efficacy in inducing antibody class switching from IgM to STn-specific IgG. Subtypes of IgG antibody were primarily IgG1 and IgG3.
The tumor‐associated antigen mucin 1 (MUC1) has been pursued as an attractive target for cancer immunotherapy, but the poor immunogenicity of the endogenous antigen hinders the development of vaccines capable of inducing effective anti‐MUC1 immunodominant responses. Herein, we prepared synthetic anti‐MUC1 vaccines in which the hydrophilic MUC1 antigen was N‐terminally conjugated to one or two palmitoyl lipid chains (to form amphiphilic Pam‐MUC1 or Pam2‐MUC1). These amphiphilic lipid‐tailed MUC1 antigens were self‐assembled into liposomes containing the NKT cell agonist αGalCer as an adjuvant. The lipid‐conjugated antigens reshaped the physical and morphological properties of liposomal vaccines. Promising results showed that the anti‐MUC1 IgG antibody titers induced by the Pam2‐MUC1 vaccine were more than 30‐ and 190‐fold higher than those induced by the Pam‐MUC1 vaccine and the MUC1 vaccine without lipid tails, respectively. Similarly, vaccines with the TLR1/2 agonist Pam3CSK4 as an adjuvant also induced conjugated lipid‐dependent immunological responses. Moreover, vaccines with the αGalCer adjuvant induced significantly higher titers of IgG antibodies than vaccines with the Pam3CSK4 adjuvant. Therefore, the non‐covalent assembly of the amphiphilic lipo‐MUC1 antigen and the NKT cell agonist αGalCer as a glycolipid adjuvant represent a synthetically simple but immunologically effective approach for the development of anti‐MUC1 cancer vaccines.
Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Novel insecticidal targets are always
in demand due to the development
of resistance. OfHex1, a β-N-acetyl-d-hexosaminidase identified in Ostrinia
furnacalis (Asian corn borer), is involved in insect chitin
catabolism and has proven an ideal target for insecticide development.
In this study, structure-based virtual screening, structure simplification,
and biological evaluation are used to show that compounds with a biphenyl–sulfonamide
skeleton have great potential as OfHex1 inhibitors.
Specifically, compounds 10k, 10u, and 10v have K
i values of 4.30, 3.72,
and 4.56 μM, respectively, and thus, they are more potent than
some reported nonglycosyl–based inhibitors such as phlegmacin
B1 (K
i = 26 μM), berberine
(K
i = 12 μM), 2 (K
i = 11.2 μM), and 3 (K
i = 28.9 μM). Furthermore, inhibitory
kinetic assessments reveal that the target compounds are competitive
inhibitors with respect substrate, and based on toxicity predictions,
most of them have potent drug properties. The obtained results indicate
that the biphenyl–sulfonamide skeleton characterized by simple
chemical structure, synthetic tractability, potent activity, and low
toxicity has potential for further development in pest management
targeting OfHex1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.