Ocean polymetallic nodules are oxide ores rich in Ni, Co, Cu, and Mn, which are valuable metals found in deep-sea mineral resources. Such non-ferrous metals do not exist in isolation, and producing concentrates using conventional mineral separation techniques is challenging without pre-treatment. We propose an effective, environmentally-friendly recovery technology combined with solid-state metalized reduction treatment and magnetic separation to recycle these metals from ocean polymetallic nodules. We conducted single-factor tests to investigate the effects of additives, anthracite dosage, duration, and reduction temperature on metal recovery and to obtain optimal operating parameters. We found that valuable metals in ocean polymetallic nodules may be selectively reduced to a metallic state. Only a fraction of Mn was reduced to metal. The reduced metals were recovered to concentrates using magnetic separation. More than 80% of these metals were concentrated to magnetic concentrates with mass ratios of 10–15%. The recovery rates of Ni, Co, Cu, Mn, and Fe in concentrates were optimum at 86.48%, 86.74%, 83.91%, 5.63%, and 91.46%, respectively, when using CaF2 4%, anthracite 7%, SiO2 dosage 5%, and FeS 6% at 1100 °C for 2.5 h. This approach to non-ferrous metal extraction using conventional hydrometallurgical processes could be a step toward practical industrial-scale techniques for the recovery of metals from polymetallic nodules.
Cobalt-rich crust is a seabed metal mineral resource that is different from oceanic polymetallic nodules. Based on the higher Co content than polymetallic nodules, the commercial value of cobalt-rich crust may be better than that of polymetallic nodules. Due to the special distribution of valuable metals, commercial implementation is always limited. Herein, a novel process is proposed to efficiently and, in an eco-friendly way, recycle valuable metals from cobalt-rich crust. The results indicate that carbon could promote the decomposition of manganite in the cobalt-rich crust during the acid baking process, and the leaching ratio of Mn could increase by 50% when carbon is added during acid baking. In addition, it can be found that the promotion of carbon for Co is stronger at low sulfuric acid consumption than that at high sulfuric acid consumption; however, there is no promotion of carbon for leaching Ni and Cu during the acid baking process. The leaching ratio of Ni, Co, Cu, Mn, and Fe reached 98.59%, 91.62%, 93.81%, 41.27%, and 26.94%, respectively, when the mass ratio of the sulfuric acid and cobalt-rich crust was 0.567, the mass ratio of the carbon and cobalt-rich crust was 0.1, the temperature was 200 °C and the time was 240 min. This research could provide an alternative economic process for recycling valuable metals from cobalt-rich crusts.
A ballot permutation is a permutation π such that in any prefix of π the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n, d, j)} n,d,j , which denote the number of permutations of length n with d descents and j as the first letter. Besides, by a series of calculations with generatingfunctionology, we confirm a recent conjecture of Wang and Zhang for ballot permutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.