We have investigated properties of the Cu-doped ZnO crystalline film synthesized by the hydrothermal method. X-ray diffraction and X-ray photoelectron spectroscopy results provide the evidence that Cu 2+ is incorporated into the ZnO lattices. Photoluminescence spectrum of the rod arrays shows that the UV emission peak shifts a little to lower energy and its intensity decreased. There are another two emission peaks centred in blue and green regions because of the incorporation of Cu 2+ ions. The rod arrays have exhibited room-temperature ferromagnetic behaviour with the remanence of 0•926 × 10 −3 emu/cm 3. We suggest that the exchange interaction between local spin-polarized electrons (such as the electrons of Cu 2+ ions) and conductive electrons is the cause of room-temperature ferromagnetism.
The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.