Mechanical attrition (MA) is applied to assist the electroplating Ni-P coating on a magnesium alloy substrate. The influence of MA on the microstructure and electrochemical performance of the coating was studied with SEM, XRD, electrochemical impedance spectroscopy (EIS) and polarization curves. The results show that under MA, the Ni-P electroplating becomes compact and free of cracks and pores, leading to significant improvement in the coating corrosion resistance. MA promote transformation the coating from amorphous state to crystalline one and produce an obvious transition layer at the coating-substrate interface, which is beneficial to enhancing the coating adhesion strength and other mechanical properties.