This study explored the model of urban impervious surface (IS) density, land surface temperature (LST), and comprehensive ecological evaluation index (CEEI) from urban centers to suburbs. The interrelationships between these parameters in Guangzhou from 1987 to 2019 were analyzed using time-series Landsat-5 TM (Thematic Mapper), Landsat-8 OLI (Operational Land Imager), and TIRS (Thermal Infrared Sensor) images. The urban IS densities were calculated in concentric rings using time-series IS fractions, which were used to construct an inverse S-shaped urban IS density function to depict changes in urban form and the spatio-temporal dynamics of urban expansion from the urban center to the suburbs. The results indicated that Guangzhou experienced expansive urban growth, with the patterns of urban spatial structure changing from a single-center to a multi-center structure over the past 32 years. Next, the normalized LST and CEEI in each concentric ring were calculated, and their variation trends from the urban center to the suburbs were modeled using linear and nonlinear functions, respectively. The results showed that the normalized LST had a gradual decreasing trend from the urban center to the suburbs, while the CEEI showed a significant increasing trend. During the 32-year rapid urban development, the normalized LST difference between the urban center and suburbs increased gradually with time, and the CEEI significantly decreased. This indicated that rapid urbanization significantly expanded the impervious surface areas in Guangzhou, leading to an increase in the LST difference between urban centers and suburbs and a deterioration in ecological quality. Finally, the potential interrelationships among urban IS density, normalized LST, and CEEI were also explored using different models. This study revealed that rapid urbanization has produced geographical convergence between several ISs, which may increase the risk of the urban heat island effect and degradation of ecological quality.
Owing to the limitation of spatial resolution and spectral resolution, deep learning methods are rarely used for the classification of multispectral remote sensing images based on the real spectral dataset from multispectral remote sensing images. This study explores the application of a deep learning model to the spectral classification of multispectral remote sensing images. To address the problem of the large workload with respect to selecting training samples during classification by deep learning, first, linear spectral mixture analysis and the spectral index method were applied to extract the pixels of impervious surfaces, soil, vegetation, and water. Second, through the Euclidean distance threshold method, a spectral dataset of multispectral image pixels was established. Third, a deep learning classification model, ResNet-18, was constructed to classify Landsat 8 OLI images based on pixels’ real spectral information. According to the accuracy assessment, the results show that the overall accuracy of the classification results can reach 0.9436, and the kappa coefficient can reach 0.8808. This study proposes a method that allows for the more optimized establishment of the actual spectral dataset of ground objects, addresses the limitations of difficult sample selection in deep learning classification and of spectral similarity in traditional classification methods, and applies the deep learning method to the classification of multispectral remote sensing images based on a real spectral dataset.
In order to break through the bottleneck of agricultural talents and effectively promote the implementation of rural revitalization strategy, this paper constructs a six-factors model that influences the new professional farmers' willingness to sustainable production: Individual Factor, Production and Management Factor, Education and Cultivation Factor, Social Capital Factor, Policy Sensitivity Factor and Development Factor. This paper provides a method for measuring the influence direction and extent of each factor, which is conducive for policymakers to design targeted policies for new professional farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.