Rice (Oryza sativa L.) is the most important staple crop of China, and its production is related to both natural condition and human activities. It is fundamental to comprehensively assess the influence of terrain conditions on rice production to ensure a steady increase in rice production. Although many studies have focused on the impact of one or several specific factors on crop production, few studies have investigated the direct influence of terrain conditions on rice production. Therefore, we selected Hunan Province, one of the major rice-producing areas in China, which exhibits complex terrain conditions, as our study area. Based on remote sensing data and statistical data, we applied spatial statistical analysis to explore the effects of terrain factors on rice production in terms of the following three aspects: the spatial patterns of paddy fields, the rice production process and the final yield. We found that 1) terrain has a significant impact on the spatial distribution of paddy fields at both the regional scale and the county scale; 2) terrain controls the distribution of temperature, sunlight and soil, and these three environmental factors consequently directly impact rice growth; 3) compared with the patterns of paddy fields and the rice production process, the influences of terrain factors on the rice yield are not as evident, with the exception of elevation; and 4) the spatial distribution of paddy fields mismatched that of production resources due to terrain factors. Our results strongly suggest that managers should scientifically guide farmers to choose suitable varieties and planting systems and allocate rice production resources in the northern plain regions to ensure food security.
The proper disposal of steel slag has always been a great challenge for the metallurgical industry in China and around the world. In this work, the steel slag aggregate (SSA) was surface pretreated (PSSA) and applied into asphalt mixture. The adhesive behavior between the bitumen and five different types of aggregates (i.e., limestone, diorite, diabase, SSA, PSSA) were evaluated based on the contact angle and binder bond strength tests. The pavement performance of three asphalt mixtures which contain normal aggregate, SSA and PSSA respectively, was analyzed by Marshall stability test, wheel-tracking rutting test, low-temperature bending creep test and water sensitivity test. The results showed that surface modification can improve the surface properties of SSA, reduce its contact angle with bitumen, and eventually lead to the improvement of adhesion between them. In addition to the satisfied low-temperature properties, PSSA was found to significantly improve the anti-rutting property and reduce the water sensitivity of asphalt mixture. This work is expected to promote an alternative application for recycling of SSA in pavement engineering.
Cow dung waste has caused severe environmental pollution and public health issues in China. In this study, the cow dung residues were used as a cheap renewable fiber to modify asphalt binder, providing a new solution for the proper disposal of cow dung waste. Three cow dung fibers with two lengths were prepared using different treatments, including original cow dung fiber (CDF), surface treatments of cow dung fiber (STCDF) and alkali treatments of cow dung fiber (ATCDF). The physicochemical properties of CDF, STCDF and ATCDF were analyzed by scanning electron microscope (SEM) and thermogravimetry (TG). The viscidity, rheological properties and fatigue characteristics of CDF modified asphalt binders (CDFMA) were evaluated using Brookfield viscometer and dynamic shear rheometer. The results showed that the rough surfaces of STCDF and ATCDF improved their thermal stability. STCDF and ATCDF enhanced the resistance to permanent deformation under high temperature conditions of modified asphalt binder. STCDF modified asphalt binders exhibited the best viscosity and rheological performance. The increase of fiber length was positively correlated with the high temperature deformation resistance of CDFMA. CDF, STCDF and ATCDF inhibited fatigue cracking of modified asphalt binders compared to base asphalt binders. ATCDF modified asphalt binders exhibited higher fatigue life and smaller crack under the same cyclic loading. The increase in fiber length had a slight improvement on the fatigue resistance of modified asphalt binders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.