As a traditional soybean product with good quality and a healthy food with many functional components, tofu is increasingly consumed in people's daily life. Traditional tofu processing consists of numerous steps, including the soaking and grinding of soybean seeds, heating of the soybean slurry, filtering, and addition of coagulants, and others. The properties of soybean seeds, processing scale, soaking and heating conditions, type and concentration of coagulant, and other factors collectively impact the processing steps and the final tofu quality. The generation of whole soybean tofu with more nutritive value comparing with traditional tofu has been successfully reported by several studies. As one of the most important functional component, isoflavones and their presence in tofu are also influenced by the above-mentioned factors, which influence the nutritive value of tofu. Research investigating the influence of tofu processing conditions on the quality and isoflavone profiles of tofu are the subject of this review. Issues that should be further studied to investigate the influence of processing conditions on the quality and nutritive value of tofu are also introduced.
Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.