The failing dentition of partially edentulous individuals may be used as an initial reference for stackable restrictive surgical guides during full‐arch immediate implant placement. The stackable guide option derived from a digital workflow increases the predictability of the performance of bone reduction, immediate implant placement, and immediate loading of provisional implant‐supported fixed dental prostheses. The present paper aims to report a practical approach to design and produce a metal framework with occlusal rests to facilitate the use of a tooth‐supported surgical guide when full‐arch immediate implant placement is indicated in patients with failing dentition.
Objectives To quantitatively assess periodontal soft tissue changes, including gingival thickness and keratinized gingiva width after periodontally accelerated osteogenic orthodontics (PAOO) surgery by digital measurements. Methods This study enrolled 15 maxillaries with 89 anterior teeth and 16 mandibles with 94 anterior teeth from Chinese adult patients with skeletal Angle Class III malocclusion for whom PAOO surgery was proposed during orthodontic treatment. Intraoral scanning and cone beam computed tomography (CBCT) examinations were performed before PAOO surgery and 6 months after the surgery. Keratinized gingiva width was measured on the digital model acquired by intraoral scanning. The gingival thickness was measured using a digital three-dimensional (3D) model based on the combination of digital intraoral scanning and CBCT data. Results The mean gingival thickness before surgery was 0.91 ± 0.32 mm and 1.21 ± 0.38 mm at 6-month after PAOO. Patients showed periodontal soft tissue increase with a mean gingival tissue gain of 0.30 ± 0.33 mm. At 1 mm, 2 and 3 mm apical to cemento-enamel junction (CEJ) levels, the gingival thickness increase of the mandible was higher than that of the maxilla (0.38 ± 0.30 mm vs. 0.24 ± 0.31 mm, 0.43 ± 0.35 mm vs. 0.26 ± 0.41 mm, 0.36 ± 0.27 vs. 0.25 ± 0.32 mm, respectively, all P < 0.05). Moreover, the sites of gingival thickness ≤ 1 mm before surgery showed more tissue gain than the sites > 1 mm (0.36 ± 0.32 mm vs. 0.18 ± 0.31 mm, P < 0.001). The mean keratinized gingiva width at T0 was 3.88 ± 1.22 mm, and increased 1.05 ± 1.24 mm 6 months after PAOO surgery. Moreover, a digital 3D model for gingival thickness measurement based on the combination of digital intraoral scanning and CBCT displayed high reliability and accuracy with an intra-class correlation coefficient (ICC) of 0.897. Conclusion PAOO could improve an insufficient quantity of periodontal soft and hard tissues in patients with skeletal Angle Class III malocclusion, including the gingival thickness and keratinized gingiva width. A digital 3D model based on the combination of digital intraoral scanning and CBCT data could provide a new digital measurement of gingival thickness with high accuracy and reliability.
Background 2019 Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has already had a serious influence on human existence, causing a huge public health concern for countries all around the world. Because SARS-CoV-2 infection can be spread by contact with the oral cavity, the link between oral illness and COVID-19 is gaining traction. Through bioinformatics approaches, we explored the possible molecular mechanisms linking the COVID-19 and periodontitis to provide the basis and direction for future research. Methods Transcriptomic data from blood samples of patients with COVID-19 and periodontitis was downloaded from the Gene Expression Omnibus database. The shared differentially expressed genes were identified. The analysis of Gene Ontology, Kyoto Encyclopedia of Genesand Genomes pathway, and protein–protein interaction network was conducted for the shared differentially expressed genes. Top 5 hub genes were selected through Maximal Clique Centrality algorithm. Then mRNA-miRNA network of the hub genes was established based on miRDB database, miRTarbase database and Targetscan database. The Least absolute shrinkage and selection operator regression analysis was used to discover possible biomarkers, which were then investigated in relation to immune-related genes. Results Fifty-six shared genes were identified through differential expression analysis in COVID-19 and periodontitis. The function of these genes was enriched in regulation of hormone secretion, regulation of secretion by cell. Myozenin 2 was identified through Least absolute shrinkage and selection operator regression Analysis, which was down-regulated in both COVID-19 and periodontitis. There was a positive correlation between Myozenin 2 and the biomarker of activated B cell, memory B cell, effector memory CD4 T cell, Type 17 helper cell, T follicular helper cell and Type 2 helper cell. Conclusion By bioinformatics analysis, Myozenin 2 is predicted to correlate to the pathogenesis and immune infiltrating of COVID-19 and periodontitis. However, more clinical and experimental researches are needed to validate the function of Myozenin 2.
Background The success rate of implant-supported prostheses for edentulous patients is relatively high. However, the incidence of biological complications, especially peri-implant mucositis and peri-implantitis, increases yearly after the placement of prostheses. The accumulation of pathogenic bacteria adjacent to a prosthesis is the main cause of biological complications. Titanium, one of the classical materials for implant-supported prostheses, performs well in terms of biocompatibility and ease of maintenance, but is still susceptible to biofilm formation. Zirconia, which has emerged as an appealing substitute, not only has comparable properties, but presents different surface properties that influence the adherence of oral bacteria. However, evidence of a direct effect on oral flora is limited. Therefore, the aim of the present study was to assess the effects of material properties on biofilm formation and composition. Methods The proposed study is designed as a 5-year randomized controlled trial. We plan to enroll 44 edentulous (mandible) patients seeking full-arch, fixed, implant-supported prostheses. The participants will be randomly allocated to one of two groups: group 1, in which the participants will receive zirconia frameworks with ceramic veneering, or group 2, in which the participants will receive titanium frameworks with acrylic resin veneering. Ten follow-up examinations will be completed by the end of this 5-year trial. Mucosal conditions around the implants will be recorded every 6 months after restoration. Peri-implant submucosal plaque will be collected at each reexamination, and bacteria flora analysis will be performed with 16S rRNA gene sequencing technology in order to compare differences in microbial diversity between groups. One week before each visit, periodontal maintenance will be arranged. Each participant will receive an X-ray examination every 12 months as a key index to evaluate the marginal bone level around the implants. Discussion The current study aims to explore the oral microbiology of patients following dental restoration with zirconia ceramic frameworks or titanium frameworks. The features of the microbiota and the mucosal condition around the two different materials will be evaluated and compared to determine whether zirconia is an appropriate material for fixed implant-supported prostheses for edentulous patients. Trial registration International Clinical Trials Registry Platform (ICTRP) ChiCTR2000029470. Registered on 2 February 2020. http://www.chictr.org.cn/searchproj.aspx?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.