BackgroundArsenic trioxide (ATO) is approved for treating terminal-stage liver cancer in China. Cryptotanshinone (CT), a STAT3 inhibitor, has exhibited certain anti-tumor potency; however, the use of CT enhanced ATO for treating liver cancer has not been reported. Here we try to elucidate how CT could enhance the efficacy of ATO for treating liver cancer and its correlation to STAT3 in vitro and in vivo.MethodsCell viability of ATO combined with CT was assessed by 1MTT assay. Cell apoptosis induced by ATO combined with CT was detected by Annexin V/PI staining and apoptosis-related proteins were detected by western blotting. STAT3-related proteins were analysis by western blotting analysis and Immunofluorescence assays. Efficacy evaluation of ATO combined with CT on xenograft was carried in nude mice and related proteins were analysis by Immunohistochemistry assays.ResultsFirst we evaluated cell vitality, and our data indicated that the ATO combined with CT showed obvious growth inhibition of Bel-7404 cells compared to ATO or CT alone. Next we found that ATO combined with CT induced cell apoptosis in Bel-7404 cells and upregulated the activation of apoptosis-related proteins cleaved-caspase-3, cleaved-caspase-9, and cleaved-poly(ADP-ribose) polymerase in a time-dependent manner. Next, we found that ATO combined with CT not only inhibited the constitutive levels of phosphorylated-JAK2 and phosphorylated-STAT3Tyr705 but did so in a time-dependent manner. We also found that ATO combined with CT reversed the upregulated expression of phosphorylated-STAT3Tyr705 stimulated by interleukin-6 and downregulated STAT3 direct target genes and the anti-apoptotic proteins Bcl-2, XIAP, and survivin but obviously upregulated the promoting apoptosis proteins Bak,.In vivo studies showed that ATO combined with CT decreased tumor growth. Tumors from ATO combined with CT–treated mice showed decreased levels of phosphorylated-STAT3Tyr705 and the anti-apoptotic protein Bcl-2 but an increased level of pro-apoptotic protein Bax.ConclusionsOur study provides strong evidence that CT could enhance the efficacy of ATO in treating liver cancer both in vitro and in vivo. Downregulation of phosphorylated-STAT3 expression may play an important role in inducing apoptosis of Bel-7404 cells.
Background Total flavonoids content (TFC) is one of the most important quality indexes of Ginkgo biloba leaf, and it is concerned with total antioxidant activity. Near-infrared spectroscopy (NIR) method has showed its advantages in fast, accurate, qualitative, and quantitative analysis of various components in many quality control researches. In this study, a calibration model was built by partial least squares regression (PLSR) coupling with NIR spectrum to quantitatively analyze the TFC and total antioxidant activity of Ginkgo biloba leaf. Results During the model establishing, some spectrum pretreatment and outlier diagnosis methods were optimized to establish the final model. The coefficients of determination (R2) for TFC and total antioxidant activity prediction were 0.8863 and 0.8486, respectively; and the root mean square errors of prediction (RMSEP) were 2.203 mg/g and 0.2211 mM/g, respectively. Conclusion These results showed that NIR method combined with chemometrics is suitable for quantitative analysis of main components and their activities and might be applied to quality control of relevant products.
Traditional treatments have a poor effect on alcoholic liver diseases. Linderae radix (LR), the dried root of Lindera aggregata (Sims) Kosterm., has been frequently used in traditional Chinese medicine for treating various diseases, and has been shown to exhibit a protective effect on liver injury. In the present study, LR extracts were made using various solvents, and then administrated to rats to establish a model of ethanol-induced liver injury. The study aimed to investigate the therapeutic effects and potential mechanism of LR extracts on acute alcoholic liver injury. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycercide (TG), cholesterol (TC), methane dicarboxylic aldehyde (MDA) and superoxide dismutase (SOD) were determined using an automatic biochemistry analyzer. In addition, pathological examination was performed by hematoxylin-eosin staining. The levels of MDA and SOD, and the expression levels of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α and interleukin (IL)-1β in liver tissue were investigated immunohistochemically. The expression of cytochrome P450 2E1 (CYP2E1) mRNA was quantified by reverse transcription-quantitative polymerase chain reaction. The results indicated that LR extracts improved the histopathological status and decreased the serum levels of ALT, AST, TG, TC and MDA. Furthermore, the levels of MDA and inflammatory mediators (NF-κB, TNF-α and IL-1β) were decreased in liver tissues, and the overexpression of CYP2E1 mRNA induced by ethanol treatment. LR extracts exhibited a protective effect on alcoholic liver injury and the mechanism may be associated with the anti-inflammatory and anti-oxidative action.
Emerging evidence suggests that microRNAs (miRNAs) may be pathologically involved in osteoarthritis (OA). Subchondral bone (SCB) sclerosis is accounted for the knee osteoarthritis (KOA) development and progression. In this study, we aimed to screen the miRNA biomarkers of KOA and investigated whether these miRNAs regulate the differentiation potential of mesenchymal stem cells (MSCs) and thus contributing to SCB. We identified 48 miRNAs in the blood samples in KOA patients (n = 5) through microarray expression profiling detection. After validation with larger sample number, we confirmed hsa‐miR‐582‐5p and hsa‐miR‐424‐5p were associated with the pathology of SCB sclerosis. Target genes prediction and pathway analysis were implemented with online databases, indicating these two candidate miRNAs were closely related to the pathways of pluripotency of stem cells and pathology of OA. Surprisingly, mmu‐miR‐582‐5p (homology of hsa‐miR‐582‐5p) was downregulated in osteogenic differentiation and upregulated in adipogenic differentiation of mesenchymal progenitor C3H10T1/2 cells, whereas mmu‐mir‐322‐5p (homology of hsa‐miR‐424‐5p) showed no change through the in vitro study. Supplementing mmu‐miR‐582‐5p mimics blocked osteogenic and induced adipogenic differentiation of C3H10T1/2 cells, whereas silencing of the endogenous mmu‐miR‐582‐5p enhanced osteogenic and repressed adipogenic differentiation. Further mechanism studies showed that mmu‐miR‐582‐5p was directly targeted to Runx2. Mutation of putative mmu‐miR‐582‐5p binding sites in Runx2 3′ untranslated region (3′UTR) could abolish the response of the 3′UTR‐luciferase construct to mmu‐miR‐582‐5p supplementation. Generally speaking, our data suggest that miR‐582‐5p is an important biomarker of KOA and is able to regulate osteogenic and adipogenic differentiation of MSCs via targeting Runx2. The study also suggests that miR‐582‐5p may play a crucial role in SCB sclerosis of human KOA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.