Aims The purpose of our study was to evaluate the feasibility and efficacy of cardiac resynchronization therapy (CRT) via left bundle branch pacing (LBBP-CRT) compared with optimized biventricular pacing (BVP) with adaptive algorithm (BVP-aCRT) in heart failure with reduced left ventricular ejection fraction ≤35% (HFrEF) and left bundle branch block (LBBB). Methods and results One hundred patients with HFrEF and LBBB undergoing CRT were prospectively enrolled in a non-randomized fashion and divided into two groups (LBBP-CRT, n = 49; BVP-aCRT, n = 51) in four centres. Implant characteristics and echocardiographic parameters were accessed at baseline and during 6-month and 1-year follow-up. The success rate for LBBP-CRT and BVP-aCRT was 98.00% and 91.07%. Fused LBBP had the greatest reduced QRS duration compared to BVP-aCRT (126.54 ± 11.67 vs. 102.61 ± 9.66 ms, P < 0.001). Higher absolute left ventricular ejection fraction (LVEF) and △LVEF was also achieved in LBBP-CRT than BVP-aCRT at 6-month (47.58 ± 12.02% vs. 41.24 ± 10.56%, P = 0.008; 18.52 ± 13.19% vs. 12.89 ± 9.73%, P = 0.020) and 1-year follow-up (49.10 ± 10.43% vs. 43.62 ± 11.33%, P = 0.021; 20.90 ± 11.80% vs. 15.20 ± 9.98%, P = 0.015, P = 0.015). There was no significant difference in response rate between two groups while higher super-response rate was observed in LBBP-CRT as compared to BVP-aCRT at 6 months (53.06% vs. 36.59%, P = 0.016) and 12 months (61.22% vs. 39.22%, P = 0.028) during follow-up. The pacing threshold was lower in LBBP-CRT at implant and during 1-year follow-up (both P < 0.001). Procedure-related complications and adverse clinical outcomes including heart failure hospitalization and mortality were not significantly different in two groups. Conclusions The feasibility and efficacy of LBBP-CRT demonstrated better electromechanical resynchronization and higher clinical and echocardiographic response, especially higher super-response than BVP-aCRT in HFrEF with LBBB.
Background: Allicin, a major component of garlic, is regarded as a cardioprotective agent and is associated with increased endothelial function. Methods: The effects of allicin on lipopolysaccharide (LPS)-induced vascular oxidative stress and inflammation in cultured human umbilical vein endothelial cells (HUVECs) and the mechanisms underlying these effects were studied. The protective effects were measured using cell viability, a lactate dehydrogenase (LDH) assay and cell apoptosis as indicators, and the anti-oxidative activity was determined by measuring reactive oxygen species (ROS) generation, oxidative products and endogenous antioxidant enzyme activities. HUVEC mitochondrial function was assessed by determining mitochondrial membrane potential (MMP) collapse, cytochrome c production and mitochondrial ATP release. To investigate the potential underlying mechanisms, we also measured the expression of dynamic mitochondrial proteins using western blotting. Furthermore, we evaluated the Nrf2 antioxidant signaling pathway using an enzyme-linked immunosorbent assay (ELISA). Results: Our results demonstrated that allicin enhanced HUVEC proliferation, which was suppressed by LPS exposure, and LDH release. Allicin ameliorated LPS-induced apoptosis, suppressed ROS overproduction, reduced lipid peroxidation and decreased the endogenous antioxidant enzyme activities in HUVECs. These protective effects were associated with the inhibition of mitochondrial dysfunction as indicated by decreases in the MMP collapse, cytochrome c synthesis and mitochondrial ATP release. In addition, allicin attenuated the LPS-induced inflammatory responses, including endothelial cell adhesion and TNF-α and IL-8 production. Furthermore, allicin increased the expression of LXRα in a dose-dependent manner. Allicin-induced attenuation of inflammation was inhibited by LXRα siRNA treatment. Finally, allicin activated NF-E2-related factor 2 (Nrf2), which controls the defense against oxidative stress and inflammation. Conclusions: Taken together, the present data suggest that allicin attenuated the LPS-induced vascular injury process, which may be closely related to the oxidative stress and inflammatory response in HUVECs. Allicin modulated Nrf2 activation and protected the cells against LPS-induced vascular injury. Our findings suggest that allicin attenuated the LPS-induced inflammatory response in blood vessels.
End-stage hypertensive heart disease is an increasing cause of cardiac mortality. Therefore, the current study focused on the cardiac remodelling from hypertrophy to fibrosis in old-aged spontaneously hypertensive rats (SHRs), and explored the therapeutic effects of Rosuvastatin and its possible mechanism(s) of action. Spontaneously hypertensive rats at age 52 weeks were randomly divided into three groups, the first two to receive Rosuvastatin at a dose of 20 mg/kg/day and 40 mg/kg/day, respectively, and the third to receive placebo, which was to be compared with Wistar-Kyoto as controls. After 2-month treatment, SBP, heart to body weight ratio (HW/BW%) and echocardiographic features were evaluated, followed by haematoxylin and eosin and Masson trichrome staining in conjunction with qPCR of foetal gene expressions. Transferase-mediated dUTP nick-end labelling assay and immunofluorescent labelling for active caspase-3 were used to detect the apoptotic cardiomyocytes. Signaling pathways involved were examined by using western blot. Old-aged SHR developed end-stage hypertensive heart disease characterized by significant enhancement of HW/BW%, LVAWd and LVPWd, and decreased LVEF and LVFS, accompanied by cardiomyocytes enlargement and fibrosis along with activation of foetal gene programme. Cardiac apoptosis increased significantly during the transition process. Rosuvastatin reduced hypertrophy significantly via AT1 Receptor-PKCβ2/α-ERK-c-fos pathway; protected myocardium against apoptosis via Akt-FOXO1, Bcl-2 family and survivin pathways and consequently suppressed the caspase-3 activity. The present study revealed that old-aged SHRs developed cardiac remodelling from hypertrophy to fibrosis via cardiac apoptosis during the end stage of hypertensive heart disease. These pathological changes might be the consequence of activation of AT1 Receptor-PKCβ2/α-ERK-c-fos and AKT-FOXO1/Bcl-2/survivin/Caspase3 signaling. Rosuvastatin effectively attenuated the structural changes by reversing the signaling transductions involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.