BackgroundVitellogenin (Vg), a major reproductive protein, has been associated with infection-resistant response in fish. However, the underlying mechanisms by which Vg is involved in anti-infectious response are not understood.Methodology/ResultsBy both protein-microbe interaction analysis and enzyme-linked immunosorbent assay as well as phagocytosis test, we demonstrate for the first time that fish Vg acts as a pattern recognition molecule with multiple specificities that can recognize bacteria as well as fungus rather than self components from fish, and functions as an opsonin that can enhance macrophage phagocytosis.ConclusionsThis study shows that fish Vg plays an integrative function in regulating immunity via its pleiotropic effects on both recognizing pathogen-associated molecular patterns and promoting macrophage phagocytosis. It also supports the notion that factors normally involved in control of female reproduction are associated with immunity in organisms that rely on Vg for oocyte development.
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.