Scanning electron microscopy (SEM) plays an important role in the intuitive understanding of microstructures because it can provide ultrahigh magnification. Tens or hundreds of images are regularly generated and saved during a typical microscopy imaging process. Given the subjectivity of a microscopist’s focusing operation, blurriness is an important distortion that debases the quality of micrographs. The selection of high-quality micrographs using subjective methods is expensive and time-consuming. This study proposes a new no-reference quality assessment method for evaluating the blurriness of SEM micrographs. The human visual system is more sensitive to the distortions of cartoon components than to those of redundant textured components according to the Gestalt perception psychology and the entropy masking property. Micrographs are initially decomposed into cartoon and textured components. Then, the spectral and spatial sharpness maps of the cartoon components are extracted. One metric is calculated by combining the spatial and spectral sharpness maps of the cartoon components. The other metric is calculated on the basis of the edge of the maximum local variation map of the cartoon components. Finally, the two metrics are combined as the final metric. The objective scores generated using this method exhibit high correlation and consistency with the subjective scores.
Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.