Generative adversarial network (GANs) is one of the most important research avenues in the field of artificial intelligence, and its outstanding data generation capacity has received wide attention. In this paper, we present the recent progress on GANs. First, the basic theory of GANs and the differences among different generative models in recent years were analyzed and summarized. Then, the derived models of GANs are classified and introduced one by one. Third, the training tricks and evaluation metrics were given. Fourth, the applications of GANs were introduced. Finally, the problem, we need to address, and future directions were discussed.INDEX TERMS Deep learning, machine learning, unsupervised learning, generative adversarial networks.
In this paper, we propose a machine learning-based fast coding unit (CU) depth decision method for High Efficiency Video Coding (HEVC), which optimizes the complexity allocation at CU level with given rate-distortion (RD) cost constraints. First, we analyze quad-tree CU depth decision process in HEVC and model it as a three-level of hierarchical binary decision problem. Second, a flexible CU depth decision structure is presented, which allows the performances of each CU depth decision be smoothly transferred between the coding complexity and RD performance. Then, a three-output joint classifier consists of multiple binary classifiers with different parameters is designed to control the risk of false prediction. Finally, a sophisticated RD-complexity model is derived to determine the optimal parameters for the joint classifier, which is capable of minimizing the complexity in each CU depth at given RD degradation constraints. Comparative experiments over various sequences show that the proposed CU depth decision algorithm can reduce the computational complexity from 28.82% to 70.93%, and 51.45% on average when compared with the original HEVC test model. The Bjøntegaard delta peak signal-to-noise ratio and Bjøntegaard delta bit rate are -0.061 dB and 1.98% on average, which is negligible. The overall performance of the proposed algorithm outperforms those of the state-of-the-art schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.