We report a synthetic approach to produce raspberry-like plasmonic nanostructures with unusually strong magnetic resonances, termed raspberry-like metamolecules (raspberry-MMs). The synthesis based on the surfactant-assisted templated seed-growth method allows for the simultaneous one-step synthesis and assembly of well-insulated gold nanoparticles. The aromatic surfactant used for the syntheses forms a thin protective layer around the nanoparticles, preventing them from touching each other and making it possible to pack discrete nanoparticles at close distances in a single cluster. The resulting isotropic gold nanoparticle clusters (i.e., raspberry-MMs) exhibit unusually broad extinction spectra in the visible and near-IR region. Finite-difference time-domain (FDTD) modeling showed that the raspberry-MMs support strong magnetic resonances that contribute significantly to the broadband spectra. The strong magnetic scattering was also verified by far-field scattering measurements, which show that in the near-IR region the magnetic dipole resonance can be even stronger than the electric dipole resonance in these raspberry-MMs. Structural parameters such as the size and the number of gold nanoparticles composing raspberry-MMs can be readily tuned in our synthetic method. A series of syntheses with varying structure parameters, along with FDTD modeling and mode analyses of corresponding model structures, showed that the close packing of a large number of metal nanoparticles in raspberry-MMs is responsible for the unusually strong magnetic resonances observed here.
Endothelial nitric oxide (NO) synthase (eNOS) is protective against kidney injury, but the molecular mechanisms are poorly understood 1 , 2 . NO-based cellular signaling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery including S-nitrosylases and denitrosylases that add and remove SNO from proteins, respectively 3 , 4 . We recently reported in Saccharomyces cerevisiae that the classic metabolic intermediate Co-enzymeA (CoA) serves as an endogenous source of SNOs through its conjugation with NO to form S-nitroso-CoA (SNO-CoA), and that S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR) 5 . Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1) 5 with an unknown physiological role. Here we report that the SNO-CoA/AKR1A1 (SCoR) system is highly expressed in renal proximal tubules where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys from acute kidney injury (AKI). Specifically, AKR1A1 deletion in mice to reduce SCoR activity increased protein S-nitrosylation, protected against AKI and improved survival, whereas renoprotection was lost in Akr1a1 −/− / eNOS −/− mice. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA/SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1 −/− mice, whereas Cys-mutant PKM2 refractory to S-nitrosylation negated SNO-CoA bioactivity. Our discoveries provide a first physiological function of the SNO-CoA/SCoR system in mammals, reveal novel regulation of renal metabolism and of PKM2 in differentiated tissues in particular, and offer a new perspective on kidney injury with therapeutic implications.
Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the β-chain (βCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of βCys93 remains unclear. Here we report that mice with a βCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, βCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, βCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.
Gold nanoshells with varying surface topographies and tunable SPR bands were synthesized in high yields by the templated surfactant-assisted seed growth method. By changing the types and amounts of surfactants and ionic additives in the growth solution, the nanoshell topography was controlled from smooth shells to highly structured nanoshells composed of spherical nanoparticles or sharp spikes of varying aspect ratios. The SPR band of the nanoshells could be tuned over a wide range of wavelengths by varying the nanoshell topography, without significantly changing the amount of gold. Finite-difference time-domain (FDTD) modeling was used to predict and understand the optical properties of nanoshells composed of various subparticles, providing insight into the origins of the tunable SPR band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.