As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
Due to its large latent heat and high energy storage capacity, paraffin as one of the phase change materials (PCMs) has been widely applied in many energy-related applications in recent years. The current applications of paraffin, however, are limited by the low thermal conductivity and the leakage problem. To address these issues, we designed and fabricated form-stable composite PCMs by impregnating organic paraffin within graphite-coated copper foams. The graphite-coated copper foam was prepared by sintering multilayer copper meshes, and graphite nanoparticles were deposited on the surface of the porous copper foam. Graphite nanoparticles could directly absorb and convert solar energy into thermal energy, and the converted thermal energy was stored in the paraffin PCMs through phase change heat transfer. The graphite-coated copper foam not only effectively enhanced the thermal conductivity of paraffin PCMs, but also its porous structure and superhydrophobic surface prevented the paraffin leakage during the charging process. The experimental results showed that the composite PCMs had a thermal conductivity of 2.97 W/(m·K), and no leakage occurred during the charging and discharging process. Finally, we demonstrated the composite PCMs can be readily integrated with solar thermoelectric systems to serve as the energy sources for generating electricity by using abundant clean solar-thermal energy.
With the rapid development of electronic technologies towards high integration, high power and miniaturization, thermal management has become an increasingly important issue to guarantee the reliability and service life of electronic devices. The oscillating heat pipe (OHP), which was governed by thermally excited oscillating motion, was considered as a promising technology to dissipate high-density heat and had excellent application prospects in many important industrial processes. A flat-plate OHP, however, was fabricated by traditional welding methods, which were difficult and inefficient, resulting in increasing the cost and wasting the production time. In this work, we adopted a new metal 3D printing technology to develop an aluminum flat-plate OHP, which made it facile to build complex inner channels with high-precision molding at one time. AlSi10Mg powders, as raw materials, were selectively melted and solidified to form the container of the flat-plate OHP. The sintered inner surface presented excellent wettability to the working fluid, which facilitated the evaporation of the working fluid. Acetone was chosen as the working fluid, and the filling ratios with a range of 40–70% were loaded into the flat-plate oscillating heat pipe to analyze its effect on heat transfer performance. It was found that the 3D-printed flat-plate OHP with a 60% filling ratio had a better heat transfer performance and a lower thermal resistance, and it was able to work properly in both vertical and horizontal operation modes. The 3D-printed flat-plate OHP had been successfully applied for the thermal management of high-power LEDs, and the results showed that the temperature of LEDs was maintained within 60 °C, and its service life was prolonged.
As flexible electronic technologies rapidly developed with a requirement for multifunction, miniaturization, and high power density, effective thermal management has become an increasingly important issue. The oscillating heat pipe, as a promising technology, was used to dissipate high heat fluxes and had a wide range of applications. In this paper, we reported the fabrication and heat transfer performance evaluation of a polymer-based flexible oscillating heat pipe (FOHP) prepared using 3D printing technology. The 3D-printed inner surface presented excellent wettability to the working fluid, which was beneficial for the evaporation of the working fluid. Ethanol was selected as the working fluid, and the influence of the filling ratios range of 30–60% on heat transfer performance was analyzed. It was found that a 3D-printed FOHP with a filling ratio of 40% presented the best heat transfer performance with the lowest thermal resistance, and the fabricated heat pipes could be easily bent from 0° to 90°. With the best filling ratio, the thermal resistance of the FOHPs increased with larger bending angles. In addition, the 3D-printed FOHP was successfully applied for the thermal management of flexible printed circuits, and the results showed that the temperature of flexible printed circuits was kept within 72 °C, and its service life was guaranteed.
Developing energy harvesting and conversion technology is of great significance to mitigate the energy crisis and realize the sustainable development of human society. In this work, we designed and fabricated...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.