The hybridization of two‐dimensional transition metal dichalcogenides (2D TMDs) with other light‐sensitive materials to fabricate the TMD‐based heterostructures is an effective way to boost the overall photoelectric performance of photodetectors. In particular, the alignment of band structure at the interface of the binding materials plays a critical role in optimizing the carrier transfer path and prompting the charge separation rate, which finally lead to the simultaneous improvement of photoresponsivity and response rate and the expansion of detection range. However, the band alignment engineering topic has been barely summarized and reviewed in detail up to today. Herein, a specific review focused on the band alignment strategies and the related charge‐transfer mechanism of the recently developed novel TMD heterostructures for photodetectors is provided. The band structures are classified into four categories according to the targeted function of photodetectors, including that formed by TMDs with zero‐bandgap materials, narrow‐bandgap semiconductors, middle‐bandgap semiconductors, and wide‐bandgap semiconductors. The corresponding band alignment principles and charge‐transfer behaviors are summarized carefully by providing various latest research works as representative examples under each category. Herein, a key reference for applying and extending the fundamental band alignment principles in the design and fabrication of future TMD‐based heterostructural photodetectors is provided.
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such highenergy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic−inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
As the electronic technology becomes increasingly integrated and miniaturized, thermal management has become a major challenge for electronic device applications. A heat pipe is a highly efficient two-phase heat transfer device. Due to its simple structure, high thermal conductivity and good temperature uniformity, it has been used in many different industrial fields. A novel aluminum flat heat pipe, with micro-grooves, has in the present work been designed and fabricated by using a 3D printing technology. Aluminum powder was used as a raw material, which was selectively melted and solidified to form the shape of the heat pipe. The sintered aluminum powder increased the roughness of the inner surface of the heat pipe, and the designed micro-grooves further enhanced the capillary forces induced by the wick structure. The wettability, for the working fluid (acetone), was excellent and the capillary forces were sufficient for the working fluid to flow back in the pipe. The effects of working fluid filling ratio, on the heat transfer performance of the heat pipe, was also investigated. It was shown that a filling ratio of 10% gave the best heat transfer performance with the lowest thermal resistance. The 3D-printed flat heat pipe was, therefore, also tested for the thermal management of a LED. The temperature of the LED could be kept within 40 °C and its service life became prolonged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.