Biosensors are small but smart devices responding to the external stimulus, widely used in many fields including clinical diagnosis, healthcare and environment monitoring, etc. Moreover, there is still a pressing need to fabricate sensitive, stable, reliable sensors at present. DNA origami technology is able to not only construct arbitrary shapes in two/three dimension but also control the arrangement of molecules with different functionalities precisely. The functionalization of DNA origami nanostructure endows the sensing system potential of filling in weak spots in traditional DNA-based biosensor. Herein, we mainly review the construction and sensing mechanisms of sensing platforms based on DNA origami nanostructure according to different signal output strategies. It will offer guidance for the application of DNA origami structures functionalized by other materials. We also point out some promising directions for improving performance of biosensors.
DNA nanotechnology has provided credible approaches for assembly of three-dimensional (3D) lattices with complex patterns. However, the symmetries are strictly dependent on their initial configurations and difficult to alter via non-thermal treatments. While switchable nucleic acid structures have been employed to construct deformable DNA motifs, it remains challenging to arrange them anisotropically in 3D lattices to trigger directed collective shape transition and dynamic symmetry conversion. In this work, we used octahedral DNA origami frames to synthesize four DNA origami lattices by placing the pH-reactive i-motif sequences in the desired dimensions. Thereinto, lattices with an anisotropic design can switch between simple cubic (SC) and simple tetragonal (ST) upon pH change. Small angle X-ray scattering (SAXS) results reveal the feasibility of obtaining 3D lattices with sensitive responses to external stimuli, expanding the way to obtain low-symmetry lattices.
DNA origami technology has rapidly developed into an ideal means to programmably crystallize nanoparticles. However, most existing DNA origami three-dimensional platforms normally used a single type of DNA origami unit, which greatly limits the types of nanoparticle superlattices that can be synthesized. Here, we report a universal strategy to vastly enrich the library of nanoparticle superlattices, based on multiple-unit (≥4 units) DNA origami platforms, which were constructed by programmably cocrystallizing three different DNA origami octahedral “homologs.” Through selectively inserting nanoparticles into DNA origami monomers, numerous nanoparticle superlattices can be synthesized on the basis of the same platform. In this work, we obtained 85 types of DOF/AuNP (DNA origami frame/gold nanoparticle) superlattices using three different DNA origami platforms as examples. We believe that our strategy can provide possible access to fabricate virtually endless types of nanoparticle superlattices and promote the construction of functional materials with special properties.
DNA nanotechnology has provided credible approaches for assembly of three-dimensional (3D) lattices with complex patterns. However, the symmetries are strictly dependent on their initial configurations and difficult to alter via non-thermal treatments. While switchable nucleic acid structures have been employed to construct deformable DNA motifs, it remains challenging to arrange them anisotropically in 3D lattices to trigger directed collective shape transition and dynamic symmetry conversion. In this work, we used octahedral DNA origami frames to synthesize four DNA origami lattices by placing the pH-reactive i-motif sequences in the desired dimensions. Thereinto, lattices with an anisotropic design can switch between simple cubic (SC) and simple tetragonal (ST) upon pH change. Small angle X-ray scattering (SAXS) results reveal the feasibility of obtaining 3D lattices with sensitive responses to external stimuli, expanding the way to obtain low-symmetry lattices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.