Seed germination and subsequent seedling development are critical phases in plants. These processes are regulated by a complex molecular network in which sugar has been reported to play an essential role. However, factors affecting sugar responses remain to be fully elucidated. In this study, we demonstrate that AtIPK2β, known to participate in the synthesis of myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6, phytate), affects Arabidopsis responses to glucose during seed germination. The loss-of-function mutant atipk2β showed increased sensitivity to 6% glucose and paclobutrazol (PAC). Yeast two-hybrid assay showed that AtIPK2β interacts with sucrose non-fermenting-1-related protein kinase (SnRK1.1), and bimolecular fluorescence complementation (BiFC) and pull-down assay further confirmed this interaction. Moreover, AtIPK2β was phosphorylated by SnRK1.1 in vitro, and the effect of restoring AtIPK2β to yeast cells lacking IPK2 (Δipk2) was abolished by catalytically active SnRK1.1. Further analysis indicated that IP6 reduces the suppression of seed germination caused by glucose, accompanied by altered expression levels of glucose-/hormone-responsive genes. Collectively, these findings indicate that AtIPK2β and IP6 are involved in glucose suppression of seed germination and that AtIPK2β enzyme activity is likely to be regulated by SnRK1.1.
The plant hormone auxin controls many aspects of plant growth and development by promoting the degradation of Auxin/Indole-3-acetic acid (Aux/IAA) proteins. The domain II (DII) of Aux/IAA proteins is sufficient for eliciting the degradation by directly interacting with the auxin receptor F-box protein TIR1 to form a TIR1/AFBs-Aux/IAA complex in an auxin-dependent manner. However, the underlying mechanisms of fine-tuning Aux/IAA degradation by auxin stimuli remain to be elucidated. Here, we show that OsIPK2, a rice (Oryza sativa) inositol polyphosphate kinase, directly interacts with an Aux/IAA protein OsIAA11 to repress its degradation. In a rice protoplast transient expression system, the auxin-induced degradation of Myc-OsIAA11 fusion was delayed by co-expressed GFP-OsIPK2 proteins. Furthermore, expressing additional OsIPK2 or its N-terminal amino acid sequence enhanced the accumulation of OsIAA11 proteins in transgenic plants, which in turn caused defects in lateral root formation and auxin response. Taken together, we identify a novel co-factor of Aux/IAA in auxin signaling and demonstrate its role in regulating lateral root development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.