The shale gas potential of Ediacaran and Lower Silurian shales from the Upper Yangtze platform is assessed in this study with a focus on the contributions of clay minerals and organic matter to sorption capacity. For this purpose, a multidisciplinary assessment was carried out using petrophysical, mineralogical, petrographic and geochemical methods. In terms of TOC contents (4.2%), brittle mineral contents (68.6%) and maximum gas storage capacities (0.054–0.251 mmol/g) Ediacaran shales from this study show comparable properties to other producing shale gas systems although the thermal maturity is extremely high (VRr = 3.6%). When compared to lower Silurian shales from the same region, it is evident that (1) deeper maximum burial and (2) a lack of silica-associated preservation of the pores resulted in a relatively lower mesopore volume, higher micropore volume fraction and lower overall porosity (Ediacaran shales: 1.4–4.6%; Silurian shales: 6.2–7.4%). Gas production is therefore retarded by poor interconnectivity of the pore system, which was qualitatively demonstrated by comparing experimental gas uptake kinetics. TOC content exhibits a prominent control on sorption capacity and micropore volume for both shales. However, different contributions of clay minerals to sorption capacity were identified. This can partly be attributed to different clay types but is likely also related to burial-induced recrystallisation and different origins of illite. Additionally, it was shown that variations in sorption capacity due to incorrect estimates of clay mineral contribution are in the same range as variations due to differences in thermal maturity.
Article highlights
Pore structure and gas storage characteristics are evaluated for the first time for Ediacaran Shales from the Upper Yangtze platform
Due to a lower free gas storage capacity and diffusivity, the Ediacaran shale can be regarded as a less favorable shale gas prospect when compared to the Silurian shale
Clay mineral contribution to sorption capacity is evaluated taking clay mineralogy into consideration
Maturity-related changes of organic matter sorption capacity have been discussed on the basis of a compiled data set
Pore size distribution characterization of unconventional tight reservoirs is extremely significant for an optimized extraction of petroleum from such reservoirs. In the present study, mercury injection capillary pressure (MICP) and low-field nuclear magnetic resonance (NMR) are integrated to evaluate the pore size distribution of the Chang 7 tight sandstone reservoir. The results show that the Chang 7 tight sandstones are characterized by high clay mineral content and fine grain size. They feature complex micro-nano-pore network system, mainly composed of regular primary intergranular pores, dissolved pores, inter-crystalline pores, and micro-fractures. Compared to the porosity obtained from MICP, the NMR porosity is closer to the gas-measured porosity (core analysis), and thus can more accurately describe the total pore space of the tight sandstone reservoirs. The pore throat distribution (PTD) from MICP presents a centralized distribution with high amplitude, while the pore size distribution (PSD) derived from NMR shows a unimodal distribution or bimodal distribution with low amplitude. It is notable that the difference between the PSD and the PTD is always related to the pore network composed of large pores connecting with narrow throats. The PSD always coincides very well with the PTD in the very tight non-reservoirs with a much lower porosity and permeability, probably due to the pore geometry that is dominated by the cylindrical pores. However, a significant inconsistency between the PSD and PTD in tight reservoirs of relatively high porosity and low permeability is usually associated with the pore network that is dominated by the sphere-cylindrical pores. Additionally, Euclidean distance between PSD and PTD shows a good positive correlation with pore throat ratio (PTR), further indicating that the greater difference of pore bodies and pore throats, the more obvious differentiation of two distributions. In summary, the MICP and NMR techniques imply the different profiles of pore structure, which has an important implication for deep insight into pore structure and accurate evaluation of petrophysical properties in the tight sandstone reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.