High-resolution water sorption isotherms were measured on 13 representative mudrock samples in order to assess the mechanisms of water vapour sorption and their relationship to the pore structure of mudrocks. The isotherm measurements were performed at 303 K on a gravimetric, dynamic vapour sorption device. Experimental data were interpreted by traditional physisorption models for which the validity was evaluated by relating model parameters to those obtained from nitrogen physisorption measurements. No direct relationships with the pore structure were observed, except for the Gurvich total pore volumes and the corresponding porosity data. Specific surface areas from Brunauer–Emmett–Teller theory are ambiguous and do not relate to nitrogen data, suggesting that water molecules do not adsorb as (multi-) layers covering pore walls. The volume filling theory (Dubinin–Astakhov equation) fits the water sorption data well but no relationship to the nitrogen data was observed in the studied sample set. A lower affinity of water for micropores was evident from the higher filling pressures of N2-based micropore volumes. The Barret–Joyner–Hallenda theory combined with N2 physisorption measurements on moist mudrocks revealed that capillary condensation prevails close to saturation but not below about 0.94 relative pressure (p/p0). A distinct low-pressure hysteresis was observed from hysteresis scanning that was attributed to surface chemistry since capillary condensation occurs only at very high relative pressures. Analysis of mineralogical composition, total organic content (TOC) and organic maturity in relation to water sorption revealed only a weak correlation with the total clay content. In contrast, cation-exchange capacity (CEC) strongly correlates with water uptake, which evidences a surface-chemistry-controlled sorption mechanism. Tests of the influence of the exchangeable cation were inconclusive because pore system alteration due to cation-exchange probably superimposed the effect. To further assess the sorption mechanisms of water, nitrogen physisorption isotherms were measured on moisture-equilibrated mudrocks (11, 52, 75, 94% relative humidity at 298 K). Micropore analysis and cumulative pore-size distributions denote that water blocks pore throats rather than fills pore volumes at lower relative humidities. Over the entire humidity range, no direct relationship between water sorption and pore size was observed. These findings imply that water adsorption does not sequentially fill pores with increasing radii in mudrocks as relative humidity increases, as would be expected from water sorption by capillary condensation. This conclusion has important implications for the interpretation and measurement of geomechanical and petrophysical properties of mudrocks. Capillary pressures, particularly at low water saturations, are often calculated from water saturation using a concept based on the Kelvin equation for capillary condensation. Since water sorption in mudrocks seems to be controlled by surface chemistry rather than pore size, this approach is questionable. The observations reported here suggest that the water distribution in mudrock pore systems resulting from vapour equilibration differs from that obtained by fluid displacement (i.e. capillary drainage or imbibitions). A further consequence is that water vapour equilibration is a convenient, but not necessarily representative, method to obtain partially water-saturated mudrock samples for laboratory measurement of saturation-dependent geomechanical or petrophysical properties.
The shale gas potential of Ediacaran and Lower Silurian shales from the Upper Yangtze platform is assessed in this study with a focus on the contributions of clay minerals and organic matter to sorption capacity. For this purpose, a multidisciplinary assessment was carried out using petrophysical, mineralogical, petrographic and geochemical methods. In terms of TOC contents (4.2%), brittle mineral contents (68.6%) and maximum gas storage capacities (0.054–0.251 mmol/g) Ediacaran shales from this study show comparable properties to other producing shale gas systems although the thermal maturity is extremely high (VRr = 3.6%). When compared to lower Silurian shales from the same region, it is evident that (1) deeper maximum burial and (2) a lack of silica-associated preservation of the pores resulted in a relatively lower mesopore volume, higher micropore volume fraction and lower overall porosity (Ediacaran shales: 1.4–4.6%; Silurian shales: 6.2–7.4%). Gas production is therefore retarded by poor interconnectivity of the pore system, which was qualitatively demonstrated by comparing experimental gas uptake kinetics. TOC content exhibits a prominent control on sorption capacity and micropore volume for both shales. However, different contributions of clay minerals to sorption capacity were identified. This can partly be attributed to different clay types but is likely also related to burial-induced recrystallisation and different origins of illite. Additionally, it was shown that variations in sorption capacity due to incorrect estimates of clay mineral contribution are in the same range as variations due to differences in thermal maturity. Article highlights Pore structure and gas storage characteristics are evaluated for the first time for Ediacaran Shales from the Upper Yangtze platform Due to a lower free gas storage capacity and diffusivity, the Ediacaran shale can be regarded as a less favorable shale gas prospect when compared to the Silurian shale Clay mineral contribution to sorption capacity is evaluated taking clay mineralogy into consideration Maturity-related changes of organic matter sorption capacity have been discussed on the basis of a compiled data set
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.