The essence of the path planning problems is multi-modality constraint. However, most of the current literature has not mentioned this issue. This paper introduces the research progress of path planning based on the multi-modality constraint. The path planning of multi-modality constraint research can be classified into three stages in terms of its basic ingredients (such as shape, kinematics and dynamics et al.): Route Planning, Trajectory Planning and Motion Planning. It then reviews the research methods and classical algorithms, especially those applied to the Unmanned Surface Vehicle (USV) in every stage. Finally, the paper points out some existing problems in every stage and suggestions for future research.
Platinum-based nanomaterials have attracted much interest for their promising potentials in fields of energy-related and environmental catalysis. Designing and controlling the surface/interface structure of platinum-based nanomaterials at the atomic scale and understanding the structure-property relationship have great significance for optimizing the performances in practical catalytic applications. In this review, the strategies to obtain platinum-based catalysts with fantastic activity and great stability by composition regulation, shape control, three-dimension structure construction, and anchoring onto supports, are presented in detail. Moreover, the structure-property relationship of platinum-based nanomaterials are also exhibited, and a brief outlook are given on the challenges and possible solutions in future development of platinum-based nanomaterials towards catalytic reactions.
Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) is an important satellite precipitation product of Global Precipitation Measurement (GPM) mission. Quantitative information about the errors of IMERG has great significance for the data developers and end users. In order to investigate the characteristics and the source of the errors contained in IMERG, a bias-decomposition scheme was employed to evaluate the hourly IMERG over the eastern part of Mainland China during the warm season. First, the total bias of IMERG before and after calibration (termed as precipitationUncal and precipitationCal) was calculated using rain gauge measurements as reference. Then the bias was decomposed into three independent components including false bias, missed bias, and hit bias. Finally, the hit bias was further decomposed according to the rainfall intensity measured by rain gauges. The results indicate that (1) the bias of precipitationUncal over the north part is dominated by hit bias and false bias, leading to the serious overestimation for the precipitation over this area, but it underestimates the precipitation over the south part with the false bias and missed bias acting as major contributors; (2) the precipitationCal overestimates the precipitation over more than 80% of the study areas mainly as a result of a large amplitude of false bias; (3) the calibration algorithm used by IMERG could not reduce the missed bias and enlarges the false bias over some regions, revealing a shortcoming of this algorithm in that it could not effectively alleviate the bias resulting from the rain areas delineation; (4) the hit bias of IMERG is strongly related with the rainfall intensity of rain gauge measurements, which should be beneficial for reducing the errors of IMERG. This study provides a deep insight into the characteristics and sources of the biases inherent in IMERG, which is significant for its utilization and possible correction in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.