Here, a highly flexible and anisotropic strain sensor based on sustainable biomass‐derived materials is fabricated through a facile, low‐cost, and scalable approach. The commercially available crepe paper made of the abundant and renewable cellulose is converted into a conductive network by carbonization. The fabricated strain sensor based on this carbonized crepe paper (CCP) exhibits high flexibility, fast response time (<115 ms), high durability (>10 000 cycles), and negligible hysteresis. Especially, the CCP strain sensor shows dramatically different gauge factors (10.10 and 0.14, respectively) between tensile bending perpendicular and parallel to the fibers direction. This anisotropic sensing performance is inherited from the crepe paper's unique anisotropic structure, i.e., aligned cellulose fibers and a corrugated surface, which is well maintained in the CCP. In addition, the CCP strain sensors' practical use in detecting complex human motions and controlling a 2‐degree‐of‐freedom machine is demonstrated, indicating their potential applications in multidimensional wearable electronics and smart robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.