The ability to grow at moderate acidic conditions (pH 4.0-5.0) is important to Escherichia coli colonization of the host's intestine. Several regulatory systems are known to control acid resistance in E. coli, enabling the bacteria to survive under acidic conditions without growth. Here, we characterize an acid-tolerance response (ATR) system and its regulatory circuit, required for E. coli exponential growth at pH 4.2. A two-component system CpxRA directly senses acidification through protonation of CpxA periplasmic histidine residues, and upregulates the fabA and fabB genes, leading to increased production of unsaturated fatty acids. Changes in lipid composition decrease membrane fluidity, F 0 F 1 -ATPase activity, and improve intracellular pH homeostasis. The ATR system is important for E. coli survival in the mouse intestine and for production of higher level of 3-hydroxypropionate during fermentation. Furthermore, this ATR system appears to be conserved in other Gram-negative bacteria.
In conclusion, we found that both NLR and PLR had an unfavorable impact on PFS and OS of patients with ovarian cancer. Our meta-analysis supported that NLR/PLR could be effective prognostic predictors of ovarian cancer.
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature. Efficient utilization of xylose is required for the development of economically viable processes to produce biofuels and chemicals from biomass. However, there are still some bottlenecks in the bioconversion of xylose, including the fact that some microorganisms cannot assimilate xylose naturally and that the uptake and metabolism of xylose are inhibited by glucose, which is usually present with xylose in lignocellulose hydrolysate. To overcome these issues, numerous efforts have been made to discover, characterize, and engineer the transporters and enzymes involved in xylose utilization to relieve glucose inhibition and to develop recombinant microorganisms to produce fuels and chemicals from xylose. Here we describe a recent advancement focusing on xylose-utilizing pathways, biosynthesis of chemicals from xylose, and engineering strategies used to improve the conversion efficiency of xylose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.