Piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by piezoelectric stacks coupled with a conventional hydraulic cylinder and a set of fast-acting valves. Nowadays, such hybrid actuators are being researched and developed actively in many developed countries by requirement of high performance and compact flight system. In this research, operation principle and performance testing of the hybrid actuator were introduced. Two types of piezo-stacks are selected for experimental performance testing to identify the factors of piezo-stack which affect the performance of the hybrid actuator. The performance of piezo-stacks due to electrical power supply and self-heating was considered. Output no-load velocities and blocked force were measured on performance testing. The results showed that the maximum blocked force was 346 N and no-load velocity was 101 mm/s, resulting in maximum output power of 8.74 W at 1000 V applied voltage and 250 Hz pumping frequency.
The piezoelectric-based hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by piezoelectric stacks that is coupled to a conventional hydraulic cylinder
A piezoelectric-based hydraulic actuator is a type of piston-cylinder device which is operated by internal flow energy. Recently, an artificial muscle and a micro actuator have been developed using a new smart material and internal flow control. Thus, the actuating velocity of the fabricated integrated hybrid system was investigated using the pumping frequency and load weight. The actuating velocity was then calculated using a developed program, and the numerical result was compared with the experimental result to validate the numerical program. Also, the internal flow rate was measured to analyze the pump efficiency experimentally. The flow rate inside the integrated hybrid actuator calculated using a CFD program for various pumping frequencies was then compared with the experimental results. The maximum outlet velocity was obtained at the pumping frequency of 35 Hz and the velocity decreased from that point due to flow loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.