The precise value of the mean neutron lifetime, τ, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/-0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.
In situ surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements have been employed to measure the adsorption kinetics and absolute adsorbed amount of the poly(N-isopropyl acrylamide) (pNIPAM) from bulk aqueous solution onto a hydrophobized gold substrate. The adsorption was carried out at 31 °C, which is just below the lower critical solution temperature of pNIPAM in water. We find that the shift in the coupling angle of the surface plasmon (proportional to the "optical thickness") and the shift in the resonance frequency of the quartz crystal (proportional to the "acoustic thickness") increase in parallel for most of the adsorption. Also, the change of dissipation is proportional to the change in frequency. These observations suggest that the buildup of the polymer layer proceeds via growth in thickness rather than by densification of a layer with constant thickness. We interpret this finding in the sense that the dense high-temperature phase wets the hydrophobic gold surface. The wetting layer has a fixed density and grows in thickness. In addition, the QCM has been used to study the temperatureinduced conformational change for pNIPAM around the critical temperature. It was found that the technique was able to monitor additional adsorption that occurs when crossing the critical point, which was due to bulk phase separation. Desorption was also noted when crossing the critical point from the opposite direction, and for the given system the process was entirely reversible.
The observation of neutrons turning into antineutrons would constitute a discovery of fundamental importance for particle physics and cosmology. Observing the n−n transition would show that baryon number (B) is violated by two units and that matter containing neutrons is unstable. It would provide a clue to how the matter in our universe might have evolved from the B = 0 early universe. If seen at rates observable in foreseeable next-generation experiments, it might well help us understand the observed baryon asymmetry of the universe. A demonstration of the violation of B − L by 2 units would have a profound impact on our understanding of phenomena beyond the Standard Model of particle physics.Slow neutrons have kinetic energies of a few meV. By exploiting new slow neutron sources and optics technology developed for materials research, an optimized search for oscillations using free neutrons from a slow neutron moderator could improve existing limits on the free oscillation probability by at least three orders of magnitude. Such an experiment would deliver a slow neutron beam through a magnetically-shielded vacuum chamber to a thin annihilation target surrounded by a low-background antineutron annihilation detector. Antineutron annihilation in a target downstream of a free neutron beam is such a spectacular experimental signature that an essentially background-free search is possible. An authentic positive signal can be extinguished by a very small change in the ambient magnetic field in such an experiment. It is also possible to improve the sensitivity of neutron oscillation searches in nuclei using large underground detectors built mainly to search for proton decay and detect neutrinos. This paper summarizes the relevant theoretical developments, outlines some ideas to improve experimental searches for free neutron oscillations, and suggests avenues both for theoretical investigation and for future improvement in the experimental sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.