It is largely recognized that microRNAs (miRNAs) function to silence gene expression by targeting 3′UTR regions. However, miRNAs have also been implicated to positively-regulate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we show that expression of mouse Cyclin B1 (Ccnb1) is dependent on key factors involved in miRNA biogenesis and function (i.e. Dicer, Drosha, Ago1 and Ago2). In silico analysis identifies highly-complementary sites for 21 miRNAs in the Ccnb1 promoter. Experimental validation identified three miRNAs (miR-744, miR-1186 and miR-466d-3p) that induce Ccnb1 expression in mouse cell lines. Conversely, knockdown of endogenous miR-744 led to decreased Ccnb1 levels. Chromatin immunoprecipitation (ChIP) analysis revealed that Ago1 was selectively associated with the Ccnb1 promoter and miR-744 increased enrichment of RNA polymerase II (RNAP II) and trimethylation of histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. Functionally, short-term overexpression of miR-744 and miR-1186 resulted in enhanced cell proliferation, while prolonged expression caused chromosomal instability and in vivo tumor suppression. Such phenotypes were recapitulated by overexpression of Ccnb1. Our findings reveal an endogenous system by which miRNA functions to activate Ccnb1 expression in mouse cells and manipulate in vivo tumor development/growth.
Coronaviruses cause severe human viral diseases including SARS, MERS and COVID-19. Most recently SARS-CoV-2 virus (causing COVID-19) has led to a pandemic with no successful therapeutics. The SARS-CoV-2 infection relies on trimeric spike (S) proteins to facilitate virus entry into host cells by binding to ACE2 receptor on host cell membranes. Therefore, blocking this interaction with antibodies are promising agents against SARS-CoV-2. Here we describe using humanized llama antibody VHHs against SARS-CoV-2 that would overcome the limitations associated with polyclonal and monoclonal combination therapies. From two llama VHH libraries, unique humanized VHHs that bind to S protein and block the S/ACE2 interaction were identified. Furthermore, pairwise combination of VHHs showed synergistic blocking. Multi-specific antibodies with enhanced affinity and avidity, and improved S/ACE2 blocking are currently being developed using an in-silico approach that also fuses VHHs to Fc domains. Importantly, our current bi-specific antibody shows potent S/ACE2 blocking (KD -0.25 nM, IC100 ∼ 36.7 nM, IC95 ∼ 12.2 nM, IC50 ∼ 1 nM) which is significantly better than individual monoclonal VHH-Fcs. Overall, this design would equip the VHH-Fcs multiple mechanisms of actions against SARS-CoV-2. Thus, we aim to contribute to the battle against COVID-19 by developing therapeutic antibodies as well as diagnostics.
We recently reported that synthetic dsRNAs targeting promoter regions can induce gene expression in a phenomenon referred to as dsRNA-induced gene activation/RNA activation (RNAa) [Li et al. Proc Natl Acad Sci U S A 2006;103:17337 -42]. The present study investigates the in vitro antitumor activity RNAa can elicit through triggering the expression of cell cycle repressor protein p21 WAF1/CIP1 (p21) in human bladder cancer cells. Transfection of a 21-nucleotide dsRNA targeting the p21 promoter (dsP21) was used to induce p21 expression in T24 and J82 bladder cancer cell lines. Reverse transcription-PCR and Western blot analysis accessed the increase p21 mRNA and protein levels, respectively, in transfected cells. In association to p21 induction, dsP21 transfection significantly inhibited bladder cancer cell proliferation and clonogenicity. Further analysis of cell viability and cell cycle distribution revealed that dsP21 transfection also enhanced apoptotic cell death and caused an accumulation in the G 1 phase in both cell lines. In conclusion, p21 activation by RNAa has antitumor activity in vitro in bladder cancer cells. These results suggest that RNAa could be used for cancer treatment by targeted activation of tumor suppressor genes. [Mol Cancer Ther 2008;7(3):698 -703]
SARS-CoV-2 is a newly emergent coronavirus, which has adversely impacted human health and has led to the COVID-19 pandemic. There is an unmet need to develop therapies against SARS-CoV-2 due to its severity and lack of treatment options. A promising approach to combat COVID-19 is through the neutralization of SARS-CoV-2 by therapeutic antibodies. Previously, we described a strategy to rapidly identify and generate llama nanobodies (VHH) from naïve and synthetic humanized VHH phage libraries that specifically bind the S1 SARS-CoV-2 spike protein, and block the interaction with the human ACE2 receptor. In this study we used computer-aided design to construct multi-specific VHH antibodies fused to human IgG1 Fc domains based on the epitope predictions for leading VHHs. The resulting tri-specific VHH-Fc antibodies show more potent S1 binding, S1/ACE2 blocking, and SARS-CoV-2 pseudovirus neutralization than the bi-specific VHH-Fcs or combination of individual monoclonal VHH-Fcs. Furthermore, protein stability analysis of the VHH-Fcs shows favorable developability features, which enable them to be quickly and successfully developed into therapeutics against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.