The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Confining photons in a finite volume is in high demand in modern photonic devices. This motivated decades ago the invention of photonic crystals, featured with a photonic bandgap forbidding light propagation in all directions 1-3 . Recently, inspired by the discoveries of topological insulators (TIs) 4,5 , the confinement of photons with topological protection has been demonstrated in two-dimensional (2D) photonic structures known as photonic TIs 6-8 , with promising applications in topological lasers 9,10 and robust optical delay lines 11 . However, a fully three-dimensional (3D) topological photonic bandgap has never before been achieved. Here, we experimentally demonstrate a 3D photonic TI with an extremely wide (> 25% bandwidth) 3D topological bandgap. The sample consists of split-ring resonators (SRRs) with strong magneto-electric coupling and behaves as a "weak TI", or a stack of 2D quantum spin Hall insulators. Using direct field measurements, we map out both the gapped bulk bandstructure and the Dirac-like dispersion of the photonic surface states, and demonstrate robust photonic propagation along a non-planar surface. Our work extends the family of 3D TIs from fermions to bosons and paves the way for applications in topological photonic cavities, circuits, and lasers in 3D geometries.
We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particulate matter (PM) removal in ambient atmosphere. The PI electrospinning nanofiber film exhibited high removal efficiency for the PM particles that have diameters larger than 0.5 μm. When the R-TENG is connected, the removal efficiency of the filter is enhanced, especially when the particle diameters of the PM are smaller than 100 nm. The highest removal efficiency is 90.6% for particles with a diameter of 33.4 nm and the highest efficiency enhancement reaches 207.8% at the diameter of 76.4 nm where the removal efficiency enhanced from 27.1% to 83.6%. This technology with zero ozone release and low pressure drop offers an approach for air cleaning and haze treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.